
Wire-Cell Toolkit Noise

Brett Viren

June 24, 2022

1 Overview

WCT provides support for �noise� in various sub-packages:

� WireCellUtil/Spectrum.h provides low level functions: rayleigh(), hermitian_mirror(),
interp(), extrap(), alias(), resamples().

� WireCellAux/NoiseTools.h provides a Collector class to form mean spectra of various �a-
vors from noise-rich waveforms and Generator to produce waveforms given a σk spectrum.

� WireCellSigProc/NoiseModeler.h provides a �ow graph node using a Collector intended
to run on data rich in noise, collect mean spectra and convert the result to WCT noise

spectra and output them to �le. It makes use of a NoiseRanker to determine if any given
waveform appears to be rich in noise. Also provided is the Undigitizer component which
is e�ectively applies the inverse transform of Digitizer from gen and prepares voltage-level
waves for input to the NoiseModeler.

� WireCellGen/AddNoise.h provide �ow graph nodes to add noise coherently by groups of
channels and incoherently on a per-channel basis. I relies on one or more �noise models� to
provide spectra. The GroupNoiseModel provides two interfaces, one for coherent and another
for incoherent and both work on a channel-group basis by consuming WCT noise spectra

and a WCT channel-groups data from �le or con�guration. The EmpiricalNoiseModel

consumes WCT noise spectra and also supports runtime change in electronics shaping and
gain as well as wire length binning.

� Various Jsonnet job con�g and wire-cell-python canned plots.

See also this presentation: org, pdf

2 WCT Noise Spectra

WCT noise spectra de�nes a dataset describing mean spectral amplitudes and related metadata.
They are provided to WCT C++ code as objects following a schema de�ned here. The datasets
are provided via WCT con�guration mechanism either directly as Jsonnet con�guration data or by
naming stand-alone data �les (usually as compressed JSON but Jsonnet may also be provided).

WCT noise spectra are in the form of an array of spectrum objects. Each spectrum object

follows a schema describing what attributes it must or may have. The attributes are categorized as
required, optional or unde�ned. A spectrum object must contain all required attributes. A
consumer of a WCT noise �le must ignore unde�ned attributes. An optional attribute is one

1

noise-presentation.org

that is required for some consumers and unde�ned for others. Consumers of optional attributes
may provide default values for use if the attribute is unspeci�ed.

2.1 Required attributes

A WCT spectral object must provide these attributes:

nsamples an integer number providing the size of (number of contiguous time series samples taken
from) the waveforms used to form the mean spectral amplitude. The nsamples must not

count any zero padding that may have been applied to a waveform prior to forming the
waveform contribution to the mean spectrum (ie, prior to applying the DFT). The nsamples
value is distinct from the size of the freqs and amps arrays. If using NoiseTools::Collector

the value for nsamples is provided by the .nticks() method.

period a �oating-point number providing the original sample period (inverse of sampling frequency)
of the waveform expressed in the WCT system of units for [time]. (eg, 0.5*us for Micro-
BooNE). Note, period is not necessarily related to the values provided by the freqs array.

freqs an array of �oating-point numbers providing frequency values expressed in the WCT system
of units for [frequency]. Note, WCT's base unit for [frequency] is not 1.0 Hz. The size of this
array must be equal to the size of the amps array and an element of freqs must provide
the frequency at which the corresponding element of the amps array was sampled. The freqs
array may represent an irregular sampling andmay be unordered. It should include samples
at or near the zero and Nyquist frequencies. In particular it need not be a regular frequency
sampling of 1/period nor extend beyond the Nyquist frequency.

amps an array of �oating-point numbers providing an estimate of a mean spectral amplitude in units
of [voltage] in the WCT system of units. Note that here �amps� an abbreviation of �amplitude�
and not �amperage�. The value of an element of amps may be derived from some sub-sampling
or interpolation of an original distribution of DFT coe�cients. That is, an element of amps
is the an average 〈|Xk|〉, k ∈ [0, N (fft) − 1] with N (fft) ≥ nsamples, over some number of
waveforms of size nsamples. The inequality is typically due to zero-padding of the waveform
prior to taking the DFT. Note: in preparing amps the user is recommended to provide a number
of waveforms approximately equal to nsamples in order to co-optimize spectral resolution and
statistical stability. User is also recommended to utilize NoiseTools::Collector for low-level
noise modeling code or execute a job using NoiseModeler for a high-level development.

2.2 Optional attributes required by EmpiricalNoiseModel

The EmpiricalNoiseModel component requires these optional attributes:

const a �oating point number expressed in the same units as amps and which provides an estimate
of the mean white noise, and thus constant, spectral amplitude 〈|Xw|〉.

gain a �oating-point number giving the electronics gain from which the voltage waveforms origi-
nated. The value must be in WCT system of units for [voltage]/[charge] (eg 14.0*wc.mV/wc.fC
as expressed in WCT Jsonnet con�guration). Note, this is not a unit-less, relative gain.

shaping a �oating-point number giving the electronics shaping time from which the waveforms
originated. The value must be expressed in WCT units for [time].

2

plane an integer number giving the plane index counting from zero and in the direction of nominal
drift. Ie, U=0, V=1, W=2. This value must indicate the plane in which a channel resides in
order for the spectra to be applicable.

wirelen a �oating-point number giving a wire length expressed in the WCT system of units for
[length]. This value should be representative of (eg, binned over) wires for which the associated
spectrum applies.

2.3 Optional attributes required by GroupNoiseModel

The GroupNoiseModel provides a model interface for both coherent and incoherent noise where
spectra are grouped in some manner. It requires this optional attribute:

group an integer identifying an abstract group to which channels may be associated. The association
to channels may be provided by a WCT channel groups array. The use of groupID as this
attribute name is deprecated.

3 WCT channel groups

The GroupNoiseModel and potentially other components require information on how to collect
channels into distinct groups. The user provides this information in the form of WCT channel-

groups data structures. These are in the form of an array of WCT channel-group objects, each
of which has these required attributes:

group an integer identifying a group. Over one channel-groups set, the group values may be
discontinuous and may be unordered. Each group value must be unique in the set.

channels an array of integer values providing the channel ID numbers to associate as a group.
The channel IDs are as used in the WCT wire object con�guration provided and described
elsewhere.

4 Providing the above data

WCT noise spectra and channel group datasets are sometimes highly structured, even algorith-
mically generated, and sometimes unstructured and voluminous such as when they are derived from
some external analysis.

To accomodate the user, developers of WCT C++ IConfigurable components should de�ne a
con�guration parameter which may accept these datasets in two forms: (1) a string giving the name
of some �le holding the dataset or (2) an object or array that is directly provided as con�guration
data.

When the user provides a �le, it may be either in JSON or Jsonnet form and either may be com-
pressed. A user wanting to provide datasets as Jsonnet is suggested to look at test-noise-roundtrip.jsonnet
and the other test-noise-*.jsonnet which it imports for examples.

Developers of WCT components can provide the user this �exibility with just a few additional
lines in the configure() method of their C++ component. For example, to retrieve a channel

group dataset:

#include "WireCellUtil/Persist.h"

void MyClass::configure(const WireCell::Configuration& cfg)

3

{

auto jgroups = cfg["groups"];

if (jgroups.isString ()) {

jgroups = Persist::load(map_file);

}

// ... code using jgroups ...

}

5 Round-trip Validation

The WCT noise code supports both modeling and simulating noise. Each is e�ectively the inverses
of the other and so we may check that we get out what we put in. The �round-trip� check consists
of these steps:

� A set of �ctional noise spectra and channel groups are de�ned.

� We interpret the spectra as both coherent and incoherent.

� Each interpretation has a GroupedNoiseModel and for each a noise frame is generated.

� Each of these are digitized to ADC and result saved to �le.

� Each ADC-frame continues and an Undigitizer restores voltage level.

� Each V-frame is analyzed by a NoiseModeler

� Traces are judged by a NoiseRanker

� Survivors added to a NoiseCollector

� Finally, the grouped spectra are saved to a WCT noise spectra �le.

� Plots are made .

5.1 Input spectra

The input spectra can be viewed with:

wirecell-sigproc plot-noise-spectra \

gen/test/test-noise-spectra.jsonnet orig.pdf

This will consume spectra which are generated by the Jsonnet �le which produces a function with
the following signature:

function(ngrps=10, nsamples=4096, nsave=64, period=0.5*wc.us,

fpeak=0.1, rms=1*wc.mV)

It's arguments are as listed:

ngrps number of spectral groups to generate. The spectrum from a group will have a fraction
grpnum/ngrps of the given rms.

4

nsamples number of waveform time samples (number of �ticks�) from which the spectrum is assumed
to have originated.

nsave number of sub-smampled points to produce. This may be chosen equal to nsamples however
typical analyses result in far higher frequency resolution than statistical stability (ie, nsamples
� nwaves) and thus chosing a small nsave emulates the common case of sub-sampling the
result.

period the waveform sampling period (�tick�) from which the spectrum is assumed to have origi-
nated. This must be expressed as a [time] value in the WCT system-of-units.

peak the location of the spectral peak expressed as a fraction of the Nyquist frequency (0.5/period).

rms the expected RMS from waveforms generated from the returned mean spectral amplitude. This
must be expressed as a [voltage] value in the WCT system-of-units.

See below for guidance on how to provide meaningful values for peak and rms.

5.2 Model details

The user requires some understanding of the noise spectral model that is used in this test in order to
provide proper values. The spectral shape in the frequency domain is chosen to follow the Rayleigh
distribution,

R(x;σ) =
x

σ2
e−x

2/(2σ2), x ≥ 0

We will include a constant scaling term so that the full spectral model function is:

〈|Xk|〉 , S ·Rk,

where we discretize Rk , R(fk, σs) and de�ne the parameter σs = peak ∗ FNyquist. The σs may
be chosen to place the peak near that of some real world noise spectrum and the constant scaling
term S may be chosen so that waveforms generated from this mean spectrum will have some (mean)
RMS near that of some set of real world noise waveforms.

The choice of the Rayleigh distribution for the spectral shape is motivated by the fact it roughly
reproduces the shapes of real-world noise spectra. It is otherwise an ad-hoc choice and not motivated
by any physics. In particular, the choice does not relate to the coincidental but important fact that
each spectral bin k is also distributed by a Rayleigh distribution. Its distribution is governed by
Rayleigh parameter σk, k ∈ [0, N − 1] where N is given by nsamples.

The fact that the spectral bin values are Rayleigh-distributed provides a very practical tool
which allows relating the model parameters to the (mean) RMS in time. This is possible because
the �rst two �raw� moments of the Rayleigh distribution are related through the σk parameter as:

〈|Xk|〉 =
√
π

2
σk

and
〈|Xk|2〉 = 2σ2k.

Solving gives:

〈|Xk|〉2 =
π

4
〈|Xk|2〉, k ∈ [0, N − 1].

5

We may de�ne RMS on a per-waveform basis in the time domain and relate that to a frequency-
domain representation using Perseval/Rayleigh energy theorem:

σ2rms =
∑
k

|xk|2/N = E/N =
∑
k

|Xk|2/N2.

And we may form an average 〈·〉 over many waveforms,

〈σ2rms〉 =
∑
k

〈|Xk|2〉/N2 =
∑
k

4

π
〈|Xk|〉2/N2

Putting the above all together, we are left to choose σs and S so that the above sum gives desired
〈σ2rms〉. We expect to select σs so that the model peak will be approximately the same as the peak
of some real-world noise spectrum. Taking σs as given, we are left to solve for S:

S2 =
πN2〈σ2rms〉
4
∑

k R
2
k

Thus the rms parameter is identi�ed as providing the desired value of the
√
〈σ2rms〉. An example

with N = 6000, σrms = 1 mV, peak = 0.1, T = 0.5 µs and saving only 100 subsampled points is
shown:

See test-noise-roundtrip.sh for exact command. The commands to reproduce such plots are
described next.

6

5.3 Visualize the model

The above plot was made with a command like the following:

wirecell-sigproc plot-noise-spectra \

-A ngrps=1 \

-A nsamples=6000 \

-A nsave=100 \

gen/test/test-noise-spectra.jsonnet \

specta.pdf

As illustrated, novel values for parameters of the model may be set from the command line. This
same Jsonnet �le may be used from WCT job con�guration. This provides an easy way to de�ne
noise where the Rayliegh shape is su�cient to model a desired noise spectrum.

For comparison, an example of a spectrum modeling real-world noise from the ProtoDUNE-SP
(PDSP) detector is given:

The noise in PDSP is about 4 ADC RMS and its 12 bit ADC sees voltage in the range of 200
to 1600 mV and so expects about 1.3 mV RMS of noise measured in voltage input to the ADC.
As a reminder, the simple model above has rms = 1 mV and achieves a smilar peak of 200 mV in
amplitude for similar peak and same nsamples.

5.4 Performing the round-trip

Amain con�guration �le for wire-cell is provided that uses the same test-noise-spectra.jsonnet
described above to provide the input to the round-trip. The round-trip job can be exercised with
default parameters like:

7

$ wire-cell -c gen/test/test-noise-roundtrip.jsonnet

$ ls -l test-noise-roundtrip-*{npz,json.bz2}

The job �ow graph is:

It produces output that represents a cross product of (inco, cohe)⊗ (adc, dac) where

inco incoherent grouped noise (3 groups)

cohe coherent grouped noise (10 groups)

adc the simulated ADC

dac the ADC rescaled back to voltage level

Each cross produces a .npz �le and each noise type results in a .json.bz2 �le of output spectra.
These too can be visualized

wirecell-sigproc plot-noise-spectra \

test-noise-roundtrip-inco-spectra.json.bz2 \

inco-spectra.pdf

wirecell-sigproc plot-noise-spectra \

test-noise-roundtrip-cohe-spectra.json.bz2 \

cohe-spectra.pdf

Or, run it all together as:

aux/test/test-noise-roundtrip.sh

8

	Overview
	WCT Noise Spectra
	Required attributes
	Optional attributes required by EmpiricalNoiseModel
	Optional attributes required by GroupNoiseModel

	WCT channel groups
	Providing the above data
	Round-trip Validation
	Input spectra
	Model details
	Visualize the model
	Performing the round-trip

