
1

Marek Gayer

Unified Solids Documentation

We recommend reading this documentation together with sources of Unified Solids. These sources

are well structured and readable and will definitely help to understand the algorithms described in

this document.

Contents
Multi-Union ... 3

Construction .. 3

Voxelization of Multi-Union .. 3

Inside ... 5

DistanceToIn (p, v) .. 6

DistanceToOut .. 6

SafetyFromInside .. 7

SafetyFromOutside ... 7

Normal .. 7

Tessellated Solid ... 8

Construction .. 8

Voxelization of Tessellated Solid... 8

Voxelizator initialization steps for Tessallated solid: .. 8

Inside ... 9

Normal .. 10

SafetyFromInside .. 10

SafetyFromOutside ... 11

DistanceToIn ... 11

DistanceToOut .. 11

Specific Polycone .. 12

UPolyconeSection ... 12

2

Inside method algorithm .. 13

InsideSection(int index, const UVector3 &p) const algorithm ... 13

DistanceToIn ... 13

DistanceToOut .. 13

Normal .. 14

SafetyFromOutside ... 14

SafetyFromInside .. 14

Polyhedra and Polycone (generic) – UVSCGFaceted algoritgms .. 15

void UVCSGfaceted::InitVoxels(UReduciblePolygon &rz, double radius) .. 15

Inside method ... 16

DistanceToIn(p,v) .. 16

DistanceToOut(p,v) ... 16

Normal .. 16

SafetyFromInside .. 17

SafetyFromOutside ... 17

Unified SBT .. 18

sbtplot (method, software1, [software2] [first] [count] [color]) .. 18

sbtplotall(software1, software2, first, count) ... 19

sbtplotallone(software1, software2, first, count)... 19

sbtplot3d(method, software1, software2, first, count) .. 19

sbtgenpolycones.m and sbtgenpolyhedra.m .. 20

sbtscale ... 21

sbtscalability(n) / sbtperfall(n) .. 21

sbtvectors(method, name, nameValues1, nameValues2, first, count, color) 22

sbtperf(scale) .. 24

sbtdifferences.m, sbtdot.m, sbtplotpart.m, sbtpoints.m .. 25

3

Multi-Union

A solid based on voxelization technique. Quite good introduction, especially for an overview of

voxelization, how the parts of solids are put into boundaries, and how these boundaries forms the

grid and how the bitmasks are created might be found also in the French report of Jean-Marie

Guyader. But since then lot of things changed, including also names of classes, methods, fields. A

very important field of this solid is UVoxelizer field voxel, which manages voxelization and is shared

between UMultiUnion and UTessellatedSolid.

Construction
The multi-union is created by its constructor. AddNode method than adds it’s components. It accepts

reference to solid and its transformation (UTransform3D class). When all nodes are added, it is

necessary to call method Voxelize (note this could be renamed to e.g. SetSolidClosed to be consistent

with tessellated solid). Than it is possible to use the solid as a normal solid.

Voxelization of Multi-Union

1. Step – create bounding boxes with positions and half-lengths of each solids. Tolerance is

added to these. The corresponding method which does that is UVoxelizer::BuildVoxelLimits.

These boxes are stored in std::vector<UVoxelBox> fBoxes.

struct UVoxelBox
{
 UVector3 hlen; // half length of the box
 UVector3 pos; // position of the box
};

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

4

This picture illustrates what was done at this step:

2. Step – From boxes mentioned above, sorted boundaries for x, y, z coordinates are created.

These boundaries are reduced, for example in case the difference between boundaries

would be very small (tolerance / 100). At this step, we also make sure that we do not have

more than some very large number and more than sufficient number of boundaries (e.g.

100.000). There could be more reducing to be done, but in case of multi-union we currently

did not find it as a priority or that it would help us much. So only this initial reducing of

boundaries is made. Corresponding method is BuildBoundaries. This picture illustrates what

was done at this step, before and after the reduction:

5

3. Step – We build bitmasks which will assign for ranges created in previous steps bitmasks. If

in the range is solid with its number as n, we will set n-th bit in this case. Note that for each

of the x, y and z direction we have just one bitmask array. This is done because storing

separate array for each of the range would bring more memory requirements, as well as

performance penalties.

To make it fast we go as follows:

For each of the boxes, we determine where it’s minimal position (e.g. left for x-axis) in the

ranges. We use binary search to quickly find an index of the corresponding segment. We set

the appropriate bit depending on the index (multiplied by the total number of solids) and on

the n of the solid forming the union. The picture corresponding to what was done at this

step:

After this, the multi-union is prepared for voxelized algorithms in methods such as Inside.

Inside

Voxelized method is presented. Note that there also exists method InsideNoVoxels, which uses the

old classical algorithm. It is useful especially for debugging purposes and for comparison of

performance.

1. Candidates numbers of the voxel in which the queried point is located are retrieved (via

GetCandidatesVoxelArray)

2. The point is transformed using the transformation corresponding to candidate indexes

6

3. Appropriate solid is referenced based on candidate index. We call Inside on that solid. If

eEnside is returned we return with eInside

4. In case, we are on a surface, we store point and solid in an std::vector array

5. When all candidates were processed, we check surface points array in an attempt to find

two solids which would give normals just going in opposite directions. This would mean

we would return eInside, since the point is between two surfaces

6. Finally, after processing all candidates, if no surfaces were found, we are outside,

otherwise we are on surface

DistanceToIn (p, v)
Voxelized version presented. Code is brief and readable with logical parts moved to separate

methods.

1. We will first find distance to the first voxel (we move to the bounding box of voxels)

2. DistanceToFirst method does this

3. This can return infinity; in this case we can return with infinity

4. We move the point p by given direction v with the computed shift

5. The result of this method is minimal distance computed repeatedly by DistanceToFirst

method

6. Indexes of current voxel for x, y, z coordinates are obtained using binary search by

BinarySearch method

7. A loop for “flight” through voxels, trying to find a first component that would be

collisioned.

8. For this first list of candidates in current voxel is obtained GetCandidatesVoxelArray

9. Special method DistanceToInCandidates with the list of candidates is invoked. This goes

through the list of candidates in the current voxel calling DistanceToIn for all the given

candidates, also using its spatial transformations. Exclusion bitmask which is also passed

to this method is used to make sure that computation is fast, by not examining solids

which were already examined by this method.

10. Minimum distance is being kept. If such distance is less than shift of the point, we can

return with such distance

11. Distance (shift) needed to move the point to the border is determined using special

method voxels.DistanceToNext. If the returned value is infinity, it means we moved out

of the voxelized area. At this point it would mean we did not find any solid which would

be found collided by the ray, so we can return infinity (the cycle will break as well).

12. Again, if already found minimal distance is not greater than shift we can early exit with

the collected minimal distance

13. Coordinates of current voxel are updated. If we would find we are at the end of

voxelized area, it would mean we can return the minimal collected distance, otherwise

we continue at the step 8.

DistanceToOut
1. List of candidates is obtained via GetCandidatesVoxelArray

2. In case the returned list is empty we return 0, because it means we are outside

3. We will go through the list of candidates indexes, obtaining the solid and transformation

for these

7

4. DistanceToOut is called for points that are not outside. The largest distance, it’s

corresponding candidate index and the corresponding normal parameter are being kept

5. If some of the points were found not outside from the previous step:

a. Normal output parameter is filled by using global transformation

b. Accumulating distance with maximum distance from previous step

c. Shifting the point with that maximum distance

d. Check if we are in another solid, by calling Inside excluding the current candidate

e. Returning accumulated distance if it will be found we are outside

f. Get new candidates and go to step 3

6. Return the accumulated distance

SafetyFromInside

1. Candidates from the current voxel are obtained (because we are Inside there would be

always something)

2. Transformed solid based on a candidates index is obtained

3. Inside is called is called for that solid

4. If we are Inside of such solid, we update the minimal safety with the one we will receive

by calling SafetyFromInside of such solid

SafetyFromOutside
1. All solids components are checked:

a. If the distance to bounding box or one of its x,y,z part of a given solid component is

less than the minimal safety obtained so far, we can skip checking

SafetyFromOutside for that solid

b. Otherwise we have to call SafetyFromOutside with transformed point

c. If we received safety smaller than current minimum, update the minimal safety

2. Returned the minimal safety

Normal

1. We determine if there are any candidates in the current location of point (this way we

will also make sure we are at voxelized area)

2. If there are such candidates:

a. We traverse through the candidates asking for Inside status

b. If we are on surface (this would be the most typical case), we can return the normal

of that solid (transformed from local coordinates)

c. In cases we are not, we are collecting the smallest safety and index of the candidate

d. This index than would be used, if no solids was found where given point would be on

surface. We would then call Normal method for such solid

3. If there were no such candidates, we will find a solid in union with the smallest safety

(special method for this SafetyFromOutsideNumberNode is used)

4. We will return normal for solid returned from previous steps. Transformations to local

point to be examined as well as transformation of resulted normal to global coordinates

of multi-union is used

8

Tessellated Solid

 Made from connected triangular and quadrangular facets forming solid

 Old implementation was slow, no spatial optimization

 We use spatial division of facets into 3D grid forming voxels (i.e. we are “voxelizing”)

 Voxelizer is based on bitmasks logical and operations during initialization and on pre-

calculated list of facets candidates during runtime

Construction

 The constructions complies with the way how it is already described in the documentation

for multi-union. Method SetSolidClosed invokes the voxelization

Voxelization of Tessellated Solid

 Voxelization is similar as for the multi-union

 But is more complex and needs some additional steps not used for multi-union

 A very important difference is that during the runtime, pre-calculated lists of candidates are

being used instead of bitmasks (which are still used but only during initialization)

 The voxelize method accepts std::vector of facets

 Voxelization is not used for number of triangles less than 10

Voxelizator initialization steps for Tessallated solid:

1. Voxel limits – based on creating bounding boxes of facets in the similar way how it was

done for the multi-union step 1.

2. Boundaries are created in the same way as for the multi-union step 2.

9

3. Building bitmasks starts, but parameter NULL is given for bitmasks, which means we will

not be storing bitmasks, instead only count of candidates in each of the segments will be

evaluated. These counts are used in later steps for reducing (merging) number of ranges

4. Reduction ratios for x,y and z axis are being calculated. Either from maximum number of

voxels, which user can set or from ratios (user currently cannot use these)

5. The voxels are reduced, based on the computed ratios. There are two algorithms that

can be used BuildReduceVoxels and BuildReduceVoxels2.

a. First algorithm merges two ranges with lowest number of candidates

b. Second algorithm merges starting from left to right, until expected average

number of candidates is reached

6. After the reduction, bitmasks are built in the same way as for the multi-union, step 3.

7. Secondary voxel representation, so called mini voxels are being created. These have

minimal density and are used for some of methods (SafetyFromInside,

SafetyFromOutside)

8. List of candidates are being evaluated, together with an array – a bitmask, which holds

the information weather there are any candidates in a given voxel. When C++ will finally

offer portable hash map which Geant4 would be allowed to use, than instead of list of

candidates (std::map<int, std::vector<int> > fCandidates) and binary mask we could just

use the hashmap. It would make code more brief and clear, while still very fast.

9. For empty voxels, we pre-calculate weather these are outside or inside. This is based on

painter’s algorithm using std::stack structure for that. The motivation for this is to make

it faster and avoid recursion, which would fail for larger structures because of stack

overflow.

After this, the Tessellated Solid is ready for algorithms for methods such as Inside.

Inside
Voxelized method is presented. Note that there also exists method InsideNoVoxels, which uses the

old classical algorithm. It is useful especially for cases when voxelization is disabled (e.g. the number

of facets forming the solid is too low or in cases user forced to not to use it by setting number of

voxels to zero) for debugging purposes, and for comparison of performance.

1. If we are outside of extent, we return eOutside

2. Based on the given point p location, we determine coordinates of voxel in which we are

located

3. Candidates of given voxel are fetched (using array of empty bits and pre-calculated

candidates set in the constructor)

4. If size of these candidates are zero, we will use pre-calculated insides made in constructor.

We will receive the corresponding index for the voxel, and use it to access to Boolean

variable with these data and based on that return either eInside or eOutside.

5. For the facets candidates in the current voxel, we will check whether the point p would not

be found on a surface of one of the facets. If so, we could return with eSurface status.

6. What happens next is adaptation and modification of original tessellated algorithm. It is

based on shooting random rays. For example, if the ray does not hit any surface it would

mean that we are outside.

10

7. The original algorithm was described as follows: “The following is something of an

adaptation of the method implemented by Rickard Holmberg augmented with information

from Schneider & Eberly, "Geometric Tools for Computer Graphics," pp700-701, 2003. In

essence, we're trying to determine whether we're inside the volume by projecting a few rays

and determining if the first surface crossed is has a normal vector between 0 to pi/2 (out-

going) or pi/2 to pi (in-going). We should also avoid rays which are nearly within the plane of

the tessellated surface, and therefore produce rays randomly. For the moment, this is a bit

over-engineered (belt-braces-and-ducttape).”

8. We have to find such a ray with direction where the vector is not nearly parallel to the

surface of any facet since this causes ambiguities. The usual case is that the angles should

be sufficiently different, and there are 20 random directions to select from.

9. We modified the shooting of rays in the way that we only check those facets, which would

be candidates in corresponding voxels. We use traversal through voxelized area in the

similar way as in DistanceToIn and DistanceToOut.

10. For these limited facets in the voxel, we are trying to find an intersection between ray and

facets, for entering and leaving case. If intersection is found, distances are returned. These

values are than used to determine whether we were inside or outside, and returning

eOutside or eInside.

11. For this intersection is being asked for the facet via facet.Intersect method, separately for

12. If there are no candidates in the voxel, we use pre-calculated arrays of bits which indicate

whether the whole voxel is inside or outside.

Normal

1. For the facets in current voxels, we are computing distance to the facet via

VUFacet::Distance. If it is smaller than tolerance, we found the facet for which the point is

on surface and we call VUFacet::GetSurfaceNormal to get the vector normal and we return

true and the returned normal

2. Otherwise, we continue checking other facets

3. If no facet is found where the point is on surface (this should not happen, since we expect

user will usually provide point on surface), we call UTessellatedSolid::MinDistanceFacets:

a. This function will find shortest distances to all the voxels for the point, sorts them,

and then will gradually finds smallest distance for the facets inside them. There is an

early exit condition when found distance to facet is smaller than shortest distance to

next voxel.

b. Minimal distance and facet is returned from MinDistanceFacets

4. For the facet with minimal distance, we call VUFacet::MinDistanceFacets

SafetyFromInside

1. If we are outside of extent, we return 0, which means we were outside

2. For voxelized case, we return value of function MinDistanceFacet, already described in our

description of Normal

3. For non-voxelized case, for all the facets facet.Distance is called, and the smallest value is in

the end returned

11

SafetyFromOutside

1. Inaccurate version returns safety to bounding box

2. For non-voxelized case, all facets are checked with facet.Distance, minimal distance is

returned in the end

3. For voxelized case, we first determine if we are inside of extent of the solid. If so, and we

would find that we are in the voxel with 0 faces, we check bitmask where we have stored

weather the whole voxel is inside our outside. If we are inside, we return 0

4. Otherwise, we return value from function MinDistanceFacet, which we already described

DistanceToIn
1. Distance (shift) from point to the border of first voxel is determined

(UVoxelizer::DistanceToFirst)

2. If shift is infinity, return infinity

3. Point is shifted with the shift as current point

4. Current voxel indices are determined using UVoxelizer::GetVoxel. These indices are used to

update voxel

5. List of candidates of the current voxel are referenced using UVoxelizer::GetCandidates.

6. Minimal distance is set to infinity

7. In case their list is not empty, we call DistanceToInCandidates, which will find smallest

distance for all the candidates, based on calling VUFacet::Intersect. If the returned value is

smaller, we update our minimal distance

8. We traverse through voxels as unless UVoxelizer::DistanceToNext returns value larger than

minimal distance

DistanceToOut

1. Minimal distance is set to infinity

2. If by quick check voxel does not contain point (UVoxelizer::Contains) we return 0

3. We get coordinates of the current voxel from point coordinates

4. We get reference to list of candidates of the current voxel

5. In case of list is not empty, we call DistanceToOutCandidates, which will find & update

smallest distance for all the candidates, based on calling VUFacet::Intersect. It will also

fill normal parameter for eventual new smallest distance facet and updates found facet

index.

6. If the returned value is smaller than distance to next voxel (shift) we can break loop

7. We update the distance to next voxel via UVoxelizer::DistanceToNext

8. If such shift would return infinity, we break loop as well

9. If we did not find any candidate, we call Normal method to fill normal parameter

10. Otherwise we will fill convex variable by finding facet in list of so called extreme facets

12

Ordinary Polycone

 Similar to multi-union in a way that core data-structure is an array of UCons/UTubes

 Important concept of section, with just one UCons/UTubes

 Logic of method is usually moved to section segment, which calls version of navigation method

(e.g. Inside, DistanceToIn, DistanceToOut, Normal) for given section solid

 But does not have overhead of full voxelizer, therefore it’s much faster

 Measurements show much better performance than both Geant4/ROOT

 Half of lines of code needed in comparison with ROOT for core methods and more readable

 Type of section (Tubs/Cons) is determined in constructor

 Effort is made to pre-calculate everything in the constructor when possible, such as shift in

UPolyconeSection

UPolyconeSection

 Important data-structure to keep data for each of the section in organized and clear way.

 The data structure is filled at the constructor

 struct UPolyconeSection
 {
 VUSolid *solid;// true if all points in section are concave in regards
to whole polycone, will be determined
 double shift; // this is added to z to the point for given section
 bool tubular; // is it UTUbs or UCons?
// double left, right;
 bool convex; // TURE if all points in section are concave in regards
to whole polycone, will be determined, currently not implemented
 };

std::vector<UPolyconeSection> fSections;
std::vector<double> fZs; // z coordinates of given sections (including

left and right borders or whole polycone)

13

 fSections is a placeholder for UPolyconeSection, as well as fZs; is filled in constructor

Inside method algorithm

The code is very brief and clear and does the following:

1. First find out if we are outside of bounding box (with shifted z in respect to the box), if so

early exit with Outside

2. We will find in which z-section of polycone we are via GetSection method with z-coordinate,

which makes binary search (making sure a valid section is always returned)

3. Calling InsideSection for given section. If Inside early exit with that

4. For points around boundary within tolerance, we have to check also previous / next section

for Inside method.

a. For case, both points on two sections are on surface, check normal, if they goes

against, we are still Inside

5. Otherwise, if InsideSection reported Surface we are on surface, otherwise outside

InsideSection(int index, const UVector3 &p) const algorithm

1. Find if point p is Inside, Surface or Outside with given section

2. The point p is shifted, with the shift for given section stored in fSections

3. Original implementation called Inside method of given solid for the given section

4. New implementation inlines the code, so the performance could be better

5. Minimum and maximum radius of cone / tube at given r is obtained

6. We check if radius is outside radiuses, we return outside in this case

7. If around theses radiuses, we return surface

8. For case of full phi section, the point is than inside, unless it would be found around z

borders (left or right), which would return surface

9. For phi section, the angle is determined using atan2 and we find if it is in the phi region, we

can be Inside or Surface at this phase

10. It can be surface at this stage, under the condition that either it’s around z borders or

around radial tolerance from Phi

DistanceToIn

1. First we check if the ray would hit bounding box and/or enclosing cylinder (experiments

might be made which of the options is faster, currently both are present). If it would not hit,

we are outside

2. We shift the point with the value obtained from hitting the bounding box; important since it

increases performance of this algorithm

3. We get the current section of shifted point with GetSection

4. We start to call DistanceToIn for the solid in the section, with shift of given section

5. If concrete value is given, we can add this value to the value of shift and return it

6. If infinity is returned, we will continue checking next solid, unless z direction is close to zero

or we get away of range of sections we have. The increment is 1 or -1, depending on sign of z

DistanceToOut

1. We get current z-section of point p via GetSection

14

2. We start to accumulate distance to out result from 0

3. We check if we are outside in the current section we return the accumulated distance

4. We call DistanceToOut for the solid of current section

5. If zero is returned as result, it means we are already out, we return accumulated distance

6. We increase accumulated distance by the result of DistanceToOut

7. Point is shifted by accumulated distance, using direction v

8. We will continue checking next solid found in array of sections, unless we run out of allowed

range. The increment of corresponding index is 1 or -1, depending on sign of z component of

point

Normal

1. Current section is obtained (using GetSection in the same way as for Inside)

2. If we are close to border, also neighbouring section is obtained, similarly as in Inside

3. If not close to border, we return the value of Normal for given section solid

4. Otherwise, we have to treat surfaces in the similar way as for case of Inside

5. False is being set in case when point is found not on surface, but Normal of given section is

called to give some vector as result, though it might not be valid

SafetyFromOutside

1. For inaccurate case, we are content with the value of bounding box which is returned

2. For accurate cases, we first get the current section solid SafetyfromOutside

3. Next, all sections left and right from current sections are checked, if a lower value of

SafetyFromOutside can be found. A check whether the minimal safety is smaller than z

distance of investigated section from z distance of current section (left or right border

respectively), this would mean we can skip checking more

4. Minimal safety is returned

SafetyFromInside

1. Using binary search we will find current z section, if outside we return 0

2. We are calling SafetyFromInside, if zero returned early exit

3. The next steps are same as for SafetyFromOutside

4. Next, all sections left and right from current sections are checked, if a lower value of

SafetyFromOutside (note: Safety from Inside cannot be called in this context, because point

is not inside, we have to call SafetyFromOutside for given section) can be found. A check

whether the minimal safety is smaller than z distance of investigated section from z distance

of current section (left or right border respectively), this would mean we can skip checking

more

5. Minimal safety is returned

15

Polycone (generic) and Polyhedra – UVSCGFaceted algoritgms

Model is based on facets. Due to its universality it’s used both for Polyhedra and for generic

polycone. Navigator methods are same for both (except Inside and DistanceToIn, which thanks to

overriding first check enclosing cylinder before passing back to UVSCGfaceted implementation). The

constructors of these shapes are quite similar than those used in Geant4. Important addition is

calling method InitVoxels which we will describe bellow.

Most important fields:

 std::vector<double> fZs; // z coordinates of given sections
 std::vector<std::vector<int> > fCandidates; // precalculated
candidates for each of the section
 int fMaxSection; // maximum index number of sections of the solid
(i.e. their number - 1). regular polyhedra with z = 1,2,3 section has 2
sections numbered 0 and 1, therefore the fMaxSection will be 1 (that is 2
- 1 = 1)
 mutable UBox fBox; // bounding box of the polyhedra, used in some
methods
 double fBoxShift; // z-shift which is added during evaluation, because
bounding box center does not have to be at (0,0,0)
 bool fNoVoxels; // if set to true, no voxelized algorithms will be
used

These store the datastructures necessary for 1D voxelization, i.e. section optimization algorithms.

void UVCSGfaceted::InitVoxels(UReduciblePolygon &rz, double radius)
1. This function is called from UPolyhedra or UPolycone, after the shape is created in Create

method of these solids. R-Z vertices are copied to local variables.

16

2. The Z coordinates are sorted and only unique are kept to create sections. In each section,

faces which are relevant to this section are detected using FindCandidates method and these

are stored in the candidates lists. These lists are important for the algorithms which will

follow.

3. Bounding box is set up based on smallest and largest z coordinates and radius of shape

Inside method

1. Current section based on binary search from z coordinate is obtained via GetSection

2. Loop over index array of candidates faces of current section is being performed

3. Bitmasks are being used to mark faces which were already checked to prevent being

checked again

4. Candidate face reference is obtained using index

5. UVCSGface::Inside is called. This method returns VUSolid::EnumInside, but also distance of

the point from the facet. Only smallest value will be in the end taken into account

6. If returned value is surface, method returns surface immediately

7. If the distance is less than the smallest so far, we update smallest

8. We update the bitmasks by the index of the candidate

9. The algorithm than continues with the steps described earlier, by checking sections in the

left and right of the current section. The shift on the z-axis is compared to the smallest

already found distance of point by obtained from the Inside method. If this z-shift is larger,

we can stop checking subsequent left and right sections.

DistanceToIn(p,v)

1. We start calling DistanceToIn of bounding box. If box returns infinity, we return infinity

2. We use distance from box to shift the z coordinate of the point closer to the structure

3. We get the current section of the shifted z via GetSection

4. We loop through all the candidates in the given sections. Same as with method Inside, we

also use the bitmasks to avoid checking faces again

5. UVCSGface::Distance is called. We take into account it’s returned values only if the distance

is smaller than the best so far

6. Based on whether the z coordinate of v has + or – sign, we continue checking the sections

either on left or right from the current section. If the v.z is very close to zero, we do not

check more section.

7. We stop checking more sections if shift needed to reach next sections is greater than the

best distance obtained from faces so far

8. In the end of the method a check is made if the point is not on the surface

DistanceToOut(p,v)

1. This function is very similar to DistanceToIn, with two major differences:

2. We do not shift the point in the beginning as DistanceToIn does

3. The conditions in the end of the method to check id the point was already on surface are

different

Normal
1. We obtain the current section via GetSection

2. We loop trough the candidates, only for the current section

17

3. We store the UVCSG::face result in case returned distance is less than the best so far

4. In the end of method, we store the best answer

SafetyFromInside

1. The current section is obtained using binary search. If we are outside of valid index range we

return 0

2. For current segment, minimal safety is obtained through SafetyFromInsideSection. This

function calls face.Safety for each of the faces based on candidates indexes for given section.

It also uses bitmasks, which are passed and filled all the time this function is invoked

3. If the current section returned value close to zero, return 0

4. SafetyFromInsideSection is called for the sections to the right and then to the left, but only

until the minimal safety is greater than the z shift to the border of next section

5. Finally, if the accumulated safety is less than half tolerance return 0, otherwise return the

accumulated tolerance

SafetyFromOutside

1. For inaccurate version, estimate is providing by returning SafetyFromOutside for bounding

box.

2. For accurate version, the original code, based by checking all facets is used. Tatiana could

optimize this

18

Unified SBT
The tests are defined using Geant4 macros. Large collection of *.sbt files provides detailed example

of usage of these macros. The folder with data files is created automatically, in the folder where

/performance/errorFileName is located. There are also values.sbt and performance.sbt, which

defines ratio of points located inside, outside and on surface, for all the methods measured. Results

with output values of each method are stored in datasets. Most important parts of code are located

in SBTperformance.cc

The post-processing is based in collection of MATLAB scripts, with file names starting with “sbt”

sbtplot (method, software1, [software2] [first] [count] [color])

Makes 2D plots of points, either from Geant4, Root or USolids software. When providing software2

parameter, difference is plotted. When running, detailed information is given in the MATLAB

console, allowing to copy and paste point and direction vectors. First and count allows to specify a

region from which points should start. If count is not given, maximum number of points remaining to

the end are assumed. The current directory must be set to the one where SBT datasets are stored.

Example: sbplot(Inside, Geant4, None, 1000);

Note: Inside is a function just returning ‘Inside’, so it’s not necessary to use quotes. There are more

similar functions like this, see USolids\bridges\G4\SBT\matlab folder.

To omit software2 parameter, None or ‘’ can be passed

A typical plot obtained using sbtplot

19

sbtplotall(software1, software2, first, count)

Plots all values or differences if parameter software2 is given. It will test methods Inside,

SafetyFromInside, SafetyFromOutside, DistanceToOut, DistanceToIn, Normal.

sbtplotallone(software1, software2, first, count)

Same as sbtplotall, but it puts everything in one plot.

A typical plot obtained using sbtplotallone

sbtplot3d(method, software1, software2, first, count)

Similar to sbtplot, but differences to console are not such detailed, and it makes 3D plot instead of

2D one. It will visualize points and polyhedra of a shape, which it gets from SBT datasets.

Example: sbtplot3d(SafetyFromOutside,Geant4,Root,20001);

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-1

0

1

2

3

4

5
x 10

-10

All points

Folder: box10k ; Software: USolids - Geant4

Inside

SafetyFromInside

SafetyFromOutside

DistanceToOut

DistanceToIn

Normal-X

Normal-Y

Normal-Z

20

 A plot obtained using sbtplot3d, notice the polycone shape partially covered by point

sbtgenpolycones.m and sbtgenpolyhedra.m

These scripts creates content for .mac files for polycone and polyhedral (will make several shapes

which would differ in number of z-sections. It was used to generate data for scalability. It will also

make plots, so the user can see what was generated.

Plots obtained by sbtgenpolycones and sbtgenpolyhedra

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5

3

3.5

4

0 50 100 150 200 250 300 350 400
0

5

10

15

21

sbtscale

Used solely for comparison of scalability of method Inside for Multi-Union from data needs times.dat

and nodes.dat generated by C++ code when concrete algorithm is chosen (no voxelization, with

voxels). These need to be renamed properly to times*.dat and nodes*.dat (see sbtscale.m for more

details).

A plot from sbtscale

sbtscalability(n) / sbtperfall(n)
Makes scalability graphs by using several folders with datasets generated using USBT. By editing this

script allows user to specify folders which would be passed to core of this method, which is

sbtperfall which would be called several times. This script makes scalability pictures. There is one

parameter, n which specify which part of the folder name, separated by the dash (“-“) should be

used for labelling the x-axis of the plot.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85
0

2

4

6

8

10

12

14

Number of nodes

T
im

e
 o

f
e
x
e
c
u
ti
o
n
 [

s
]

Scaling of Multi-Union inside method with boxes

Multi-Union

Boolean solid

22

A plot obtained from sbtperfall. Sbtscalability would visualize such picture for several methods that

the user will specify there

sbtvectors(method, name, nameValues1, nameValues2, first, count, color)

Perhaps the most tricky script. For given method, it will visualize vector data-sets with file name

starting with method and appended by name. nameValues1 and nameValues2 allow to specify

concrete data sets which would contain values or differences which would be mapped on the vector

(this is currently not typically used, and can be skipped by using None). First and count allows to

focus on region or allow to focus e.g. on one vector. This command is typically used together with

sbtpolyhedra or sbtplot3d, which will visualize the shape and make figure. This can be used e.g. 2

times with different colours, this way e.g. root and Geant4 normals can be visualized. Because

sbtvectors does not open its own window, counting that this command is typically used with other

command, it may be necessary to add figure; in the beginning!

Example 1: visualization of Geant4 vectors (first 100) follows:

figure; sbtpolyhedra(Normal); sbtvectors(Normal, Geant4, None, None, 1, 100);

3s 10s 100s
0

1000

2000

3000

4000

5000

6000

Count of solid parts

T
im

e
 [

n
a
n
o
s
e
c
o
n
d
s
 p

e
r

o
p
e
ra

ti
o
n
]

Performance of method DistanceToOut at folder log

Geant4

ROOT

USolid

23

Example 2: by using the following command with trapezoid datasets and knowing that index 352

contain erroneous point (can be obtained using sbtplot), you could give following visual follows:

figure; sbtpolyhedra(Normal); sbtvectors(Normal, Geant4, None, None, 352, 1, 'k');

sbtvectors(Normal, Root, None, None, 352, 1, 'r');

24

Example 3: Visualization of DistanceToOut (case where difference around 10-6 was found between

Geant4 and ROOT). Note that green point bellow represents the value on the scale-bar right follows:

sbtplot3d(DistanceToOut, Geant4, Root, 718660, 1); sbtvectors(DistanceToOut, 'Directions', None,

None, 718660, 1, 'r');

sbtperf(scale)

One of most easy script with only one parameter. Without any parameter, it will put the

performance plot. With parameter, it will set the MATLAB YScale parameter (set(gca,'YScale', scale)).

We have this parameter especially for easy logarithmic scale).

Example with LHCb 164k foil tessellated solid:

 sbtperf;

25

Example with LHCb 164k foil tessellated solid follows:

sbtperf('log');

sbtdifferences.m, sbtdot.m, sbtplotpart.m, sbtpoints.m

These files are used internally by the scripts above. These are not meant to be called directly.

Inside Normal SafetyFromOutsideSafetyFromInside DistanceToIn DistanceToOut
0

5

10

15
x 10

6

Method

T
im

e
 p

e
r

o
n
e
 m

e
th

o
d
 c

a
ll

[n
a
n
o
s
e
c
o
n
d
s
]

Performance of methods at folder tessellatedsolid-test-t100-100k

Geant4

USolids

Inside Normal SafetyFromOutside SafetyFromInside DistanceToIn DistanceToOut
10

0

10
2

10
4

10
6

10
8

Method

T
im

e
 p

e
r

o
n
e
 m

e
th

o
d
 c

a
ll

[n
a
n
o
s
e
c
o
n
d
s
]

Performance of methods at folder tessellatedsolid-test-t100-100k

Geant4

USolids

