

Efficiency Improvements in the ROOT-based Detector Geometry Modeler Page 1

European Organization for Nuclear Research

- Summer Student Programme -

Efficiency Improvements in the

ROOT-based Detector Geometry Modeler

Work supervised by

Andrei GHEATA

andrei.gheata@cern.ch

Prepared by

Jean-Marie GUYADER

jeanmarie.guyader@gmail.com

September 2011

mailto:andrei.gheata@cern.ch
mailto:jeanmarie.guyader@gmail.com

Efficiency Improvements in the ROOT-based Detector Geometry Modeler Page 2

Table of contents

1. Introduction .. 3

2. A brief outlook of USolids ... 3

3. UMultiUnion class - Voxelization ... 4

3. 1. Synoptic diagram of the class ... 4

3. 2. Voxelization of an instance of UMultiUnion ... 4

4. Operations on the solids ... 5

4. 1. Description of the methods .. 5

4. 2. Results for Inside - Interest of voxelization - Scalability ... 5

4. 3. Other methods .. 7

5. Conclusion ... 7

Efficiency Improvements in the ROOT-based Detector Geometry Modeler Page 3

1. Introduction

ROOT and GEANT4 are two specific softwares that have been under constant improvement for

many years at CERN. While ROOT was initially designed for particle physics data analysis,

GEANT4’s original aim was to simulate the passage of particles through matter. Among the large

range of tools offered by these two programmes, some analogous features can be found. In

particular, GEANT4 and ROOT both include geometry packages allowing computations on 3D

volumes. It was therefore decided to gather these similar functionalities together in a unique new

package called USolids (standing for Universal Solids).

2. A brief outlook of USolids

One of the first targets of USolids lays in the creation of 3D volumes. Each particular sort of

volume (e.g. box, sphere, polyhedron, etc.) derives from a mother class called VUSolid. USolid

contributors had already created VUSolid, as well as the class UBox, which permits the creation

of solids in the shape of a parallelepiped. In addition, several utility classes were implemented

before the beginning of the project. For instance, they define translations, rotations, mathematical

applications, points or vectors in 3D.

 This summer student project first focused on creating a new class for geometries based on

the Boolean union of several sub solids. This new class is called UMultiUnion. So far, only

UBoxes can make up a UMultiUnion.

 For reminder, let us consider the example of the Boolean union of a sphere with a cube.

The resulting geometry is the following:

Figure 1 Boolean union of a sphere and a cube

NB: The Boolean union of more than two solids (disjoint or not), is possible.

 Below is a schematic of the information given so far:

Figure 2 Heritage from VUSolid mother class

Efficiency Improvements in the ROOT-based Detector Geometry Modeler Page 4

3. UMultiUnion class - Voxelization

Building up a union of several nodes makes it possible to realize subsequent treatments on the

resulting geometry. This is the main usage of UMultiUnion, the first class that was defined during

this summer student project.

3. 1. Synoptic diagram of the class

An instance of UMuliUnion is characterized by an array of several nodes. Each node has to be

instantiated using the internal class UNode. The creation of a node requires two elements: an

intrinsic solid (instance of one of VUSolid’s daughter classes) and a 3D transformation

(translation and rotation).

Figure 3 Synoptic diagram of UMultiUnion

 Since UMultiUnion derives from VUSolid, it is possible that a node of an instance of

UMultiUnion might contain itself a Boolean union of several solids.

3. 2. Voxelization of an instance of UMultiUnion

The algorithms carried out in the context of the USolids library have to be efficient when it

comes to the speed of execution. With this in prospect, voxelization techniques were considered.

Indeed, they enable one to know which sub solids are located in a delimited part of the 3D space.

In a nutshell, voxelization operations create a virtual irregular grid used to spot the different

nodes.

 The operations of voxelization are carried out in a specific class named UVoxelFinder, the

other important class which was developed during the summer project. Voxelization is realized

following several steps. First of all, slices are determined along each axis using the bounding

boxes of each node. Then, these slices are sorted in increasing order and some are deleted if they

are too close to each other. To finish, the nodes contained in each slice are then stored in a

memory (under the form of an array of char), for each axis.

Efficiency Improvements in the ROOT-based Detector Geometry Modeler Page 5

 The following example shows the voxelized structure, using a 2D example.

Figure 4 UMultiUnion instance to be voxelized

Figure 5 Voxelized structure

 Applying Boolean operators (e.g. OR, NOT, AND) to the memories of each axis, it is

possible to determine which solids are contained in a given voxel. Considering a point (x,y,z),

one can also compute in which voxel it is located via a binary search. UVoxelFinder enables the

user to find the candidates corresponding to a particular point.

4. Operations on the solids

4. 1. Description of the methods

For each class of solids, several similar methods have to be defined.

Let us take the following example:

 1) DistanceToOut: from a point and a given direction, this method

shall return the distance between the point and the solid, along the set

direction;

 2) DistanceToOut: idem, with a point located outside the solid;

 3) SafetyFromInside / SafetyFromOutside: these methods are

identical to the two previous ones, except that in this case, no

particular direction is set;

 4) Extent: computes the extension of the structure along one axis,

or along the three axes;

 5) Normal: this method returns the normal vector corresponding to

a given point.

 In addition, a method named Inside shall return the state of the

point: inside, outside or on a surface of the UMultiUnion structure.

 These methods had already been written before the beginning of this project. The work

was therefore to implement them in the case of a UMultiUnion, using voxelization and

optimizing the methods as much as possible.

4. 2. Results for Inside - Interest of voxelization - Scalability

Figure 6 Description of

the methods related to 3D

shapes

Efficiency Improvements in the ROOT-based Detector Geometry Modeler Page 6

In order to assess the efficiency of voxelization, two methods aiming at determining the state of a

point have been implemented: Inside and InsideDummy. The first one uses the voxelized

structure, while the second does not.

 The scalabilities of the methods were tested as a function of the number of nodes. Thus, a

regular arrangement of a variable number of nodes was created and a large number of random

points were generated in the 3D space. For each of these points, the inside methods were called

and the corresponding times summed.

 Provided that the number of shapes does not exceed a certain quantity (here 25), the

algorithm using voxelization techniques remains more efficient than the dummy implementation.

The best algorithm can thus be used in the right configuration (below and above 25, in this case).

Figure 8 Red points are points found inside the structure

zoom

Scalability of the Inside methods as a function of the number of nodes

Dummy implementation Implementation using voxelization techniques

Number of nodes [*]

Figure 7 Scalability of the Inside methods

Efficiency Improvements in the ROOT-based Detector Geometry Modeler Page 7

 The scalability of Inside was progressively improved using Callgrind. This software

shows the repartition of the execution time between the different methods.

4. 3. Other methods

The other methods presented at the end of page 5 were implemented and most of them were

optimized with regards to the dummy implementations.

 Below is a report of the tests carried out in order to assess whether or not the chosen

implementations were successful or not:

№ Tested method(s) Nature of the test(s) Results

1 Extent
Display of the superior

and inferior limits

The limits are coherent with the

placement of the nodes: OK

2 SafetyFromInside
Display of the computed safety for

given points and directions
Correct safeties are found: OK

3 SafetyFromOutside
Display of the computed safety for

given points and directions
Correct safeties are found: OK

4
SafetyFromInside

SafetyFromOutside

An automatic ROOT bridge class is

used to test the safety methods
Test returns OK

5 DistanceToIn (*)
Display of the computed distance

for given points and directions
Correct distances are found: OK

6 DistanceToOut
Display of the computed distance

for given points and directions
Correct distances are found: OK

7
DistanceToIn

DistanceToOut

An automatic ROOT bridge class is

used to test the distance methods
Test returns OK

8 Normal
Computation of the normal, even

for a point not located on a surface

The method seems to return

correct results

9 Normal
An automatic ROOT bridge class is

used to test the normal method
(**)

(*) First drafts of DistanceToIn were implemented, but did not comply with the bridge tests. The

dummy implementation is the one which is tested here.

(**) In the case in which Normal is tested with ROOT bridge tests, theses tests come to a valid

end, but unrelevant error messages do appear.

 On the whole, the results seem to show that the implemented methods globally give the

behaviours expected in the description of the methods.

5. Conclusion

The initial objective of the project was to create a class representing the Boolean union of several

solids. In this respect, the UMultiUnion class was implemented. In such a structure, the different

solids are placed and/or rotated in the space and are called nodes.

 Then, methods carrying out the voxelization of an instance of UMultiUnion were written

in the class UVoxelFinder. Subsequent tests showed that algorithms using voxelization

techniques were far more efficient than a simple loop, provided that the number of nodes be large

enough.

 To finish, other methods related to UMultiUnion were coded. Due to lack of time and

difficulty, some remain not improved. Nevertheless, most of them show correct behaviours.

