Example Programs for CVODES
v6.1.1

Radu Serban and Alan C. Hindmarsh
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

February 11, 2022

aials

<
S

Vo)

UCRL-SM-208115

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United
States government. Neither the United States government nor Lawrence Livermore National
Security, LLC, nor any of their employees makes any warranty, expressed or implied, or as-
sumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product, pro-
cess, or service by trade name, trademark, manufacturer, or otherwise does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States gov-
ernment or Lawrence Livermore National Security, LLC. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LL.C, and shall not be used for advertising or product
endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-0TNA27344.

Approved for public release; further dissemination unlimited

CONTRIBUTORS

The SUNDIALS library has been developed over many years by a number of contributors.
The current SUNDIALS team consists of Cody J. Balos, David J. Gardner, Alan C. Hind-
marsh, Daniel R. Reynolds, and Carol S. Woodward. We thank Radu Serban for significant
and critical past contributions.

Other contributors to SUNDIALS include: James Almgren-Bell, Lawrence E. Banks, Pe-
ter N. Brown, George Byrne, Rujeko Chinomona, Scott D. Cohen, Aaron Collier, Keith E.
Grant, Steven L. Lee, Shelby L. Lockhart, John Loffeld, Daniel McGreer, Slaven Peles, Cos-
min Petra, H. Hunter Schwartz, Jean M. Sexton, Dan Shumaker, Steve G. Smith, Allan G.
Taylor, Hilari C. Tiedeman, Chris White, Ting Yan, and Ulrike M. Yang.

Contents

1 Introduction

2 Forward sensitivity analysis example problems
3 Adjoint sensitivity analysis example problems
4 Parallel tests

References

18

29

31

1 Introduction

This report is intended to serve as a companion document to the User Documentation of
CVODES [1]. It provides details, with listings, on the example programs supplied with the
CVODES distribution package.

The cvODES distribution contains examples of the following types: serial and parallel
examples of Initial Value Problem (IVP) integration, serial and parallel examples of forward
sensitivity analysis (FSA), and serial and parallel examples of adjoint sensitivity analysis
(ASA). The names of all these examples are given in the following table. In addition, there
is an example using OpenMP.

Serial examples Parallel examples

IVP | cvsRoberts_dns cvsRoberts_dnsL cvsAdvDiff non_p
cvsRoberts_dns_uw cvsRoberts_dns_constraints cvsDiurnal kry_p
cvsRoberts_klu cvsRoberts_sps cvsDirunal kry_bbd_p

cvsAdvDiff_bnd cvsAdvDiff_bndL
cvsDirunal kry cvsDiurnal kry_bp
cvsDirectDemo_l1s cvsKrylovDemo_ls
cvsKrylovDemo_prec

FSA | cvsRoberts_FSA_dns cvsRoberts FSA dns_constraints cvsAdvDiff FSA non p
cvsRoberts_FSA_klu cvsRoberts_FSA_sps cvsDiurnal FSA kry_p
cvsAdvDiff FSA non cvsDiurnal FSA kry

ASA | cvsRoberts_ASAi dns cvsRoberts_ASAi dns_constraints | cvsAdvDiff ASAp non p

cvsAdvDiff ASAi _bnd cvsFoodWeb_ASAi kry
cvsFoodWeb_ASAp_kry cvsHessian ASA_FSA

cvsRoberts_ASAi_klu cvsRoberts_ASAi_sps cvsAtmDisp_ASAi_kry_bbd_p

With the exception of ”demo”-type example files, the names of all the examples distributed
with SUNDIALS are of the form [slv] [PbName] _[SA]_[1s]_[prec]_[pl, where

[slv] identifies the solver (for CVODES examples this is cvs);
[PbName] identifies the problem;

[SA] identifies sensitivity analysis examples. This field can be one of: FSA for forward
sensitivity examples, ASAi for adjoint sensitivity examples using an integral-form model
output, or ASAp for adjoint sensitivity examples using an pointwise model output;

[Is] identifies the linear solver module used (for examples using fixed-point iteration for the
nonlinear system solver, non specifies that no linear solver was used);

[prec] indicates the CVODES preconditioner module used, bp for CVBANDPRE or bbd for
CVBBDPRE (only if applicable, for examples using a Krylov linear solver);

[p] indicates an example using the parallel vector module NVECTOR_PARALLEL.

The examples are briefly described next. Note that the CVODES distribution includes all of
the cvODE C examples (denoted here as examples for IVP integration). More details on
these can be found in the cVODE Example Program document [2].

Supplied in the srcdir/examples/cvodes/serial directory are the following serial examples
(using the NVECTOR_SERIAL module):

cvsRoberts_dns solves a chemical kinetics problem consisting of three rate equations.
This program solves the problem with the BDF method and Newton iteration, with the
SUNLINSOL_DENSE linear solver module and a user-supplied Jacobian routine. It also
uses the rootfinding feature of CVODES.

cvsRoberts_dns_constraints is the same as cvsRoberts_dns but imposes the con-
straint u > 0.0 for all components.

cvsRoberts_dnsL is the same as cvsRoberts_dns but uses the SUNLINSOL_LAPACKDENSE
linear solver module.

cvsRoberts_dns_uw is the same as cvsRoberts_dns but demonstrates the user-supplied
error weight function feature of CVODES.

cvsRoberts klu is the same as cvsRoberts_dns but uses the SUNLINSOL_KLU sparse
direct linear solver module.

cvsRoberts_sps is the same as cvsRoberts_dns but uses the SUNLINSOL_SUPERLUMT
sparse direct linear solver module (with one thread).

cvsAdvDiff_bnd solves the semi-discrete form of an advection-diffusion equation in 2-
D.

This program solves the problem with the BDF method and Newton iteration, with
the SUNLINSOL_BAND linear solver module and a user-supplied Jacobian routine.

cvsAdvDiff _bndL is the same as cvsAdvDiff_bnd but uses the SUNLINSOL_LAPACKBAND
linear solver module.

cvsDiurnal kry solves the semi-discrete form of a two-species diurnal kinetics advection-
diffusion PDE system in 2-D.

The problem is solved with the BDF/GMRES method (i.e. using the SUNLINSOL_SPGMR
linear solver) and the block-diagonal part of the Newton matrix as a left preconditioner.
A copy of the block-diagonal part of the Jacobian is saved and conditionally reused
within the preconditioner setup routine.

cvsDiurnal kry_bp solves the same problem as cvsDiurnal kry, with the BDF/GM-
RES method and a banded preconditioner, generated by difference quotients, using the
module CVBANDPRE.

The problem is solved twice: with preconditioning on the left, then on the right.

cvsDirectDemo_ls is a demonstration program for CVODES with direct linear solvers.
Two separate problems are solved using both the Adams and BDF linear multistep
methods in combination with fixed-point and Newton iterations.

The first problem is the Van der Pol oscillator for which the Newton iteration cases use
the following types of Jacobian approximations: (1) dense, user-supplied, (2) dense,
difference-quotient approximation, (3) diagonal approximation. The second problem
is a linear ODE with a banded lower triangular matrix derived from a 2-D advection
PDE. In this case, the Newton iteration cases use the following types of Jacobian ap-
proximation: (1) banded, user-supplied, (2) banded, difference-quotient approximation,
(3) diagonal approximation.

cvsKrylovDemo_l1s solves the same problem as cvsDiurnal kry, with the BDF method,
but with three Krylov linear solver modules: SUNLINSOL_SPGMR, SUNLINSOL_SPBCGS,
and SUNLINSOL_SPTFQMR.

cvsKrylovDemo_prec is a demonstration program with the GMRES linear solver.
This program solves a stiff ODE system that arises from a system of partial differential
equations. The PDE system is a six-species food web population model, with predator-
prey interaction and diffusion on the unit square in two dimensions.

The ODE system is solved using Newton iteration and the SUNLINSOL_SPGMR. linear
solver module (scaled preconditioned GMRES).

The preconditioner matrix used is the product of two matrices: (1) a matrix, only
defined implicitly, based on a fixed number of Gauss-Seidel iterations using the diffusion
terms only; and (2) a block-diagonal matrix based on the partial derivatives of the
interaction terms only, using block-grouping.

Four different runs are made for this problem. The product preconditoner is applied on
the left and on the right. In each case, both the modified and classical Gram-Schmidt
options are tested.

cvsRoberts_FSA_dns solves a 3-species kinetics problem (from cvsRoberts_dns).
CVODES computes both its solution and solution sensitivities with respect to the three
reaction rate constants appearing in the model. This program solves the problem with
the BDF method, Newton iteration with the SUNLINSOL_DENSE linear solver module,
and a user-supplied Jacobian routine. It also uses the user-supplied error weight func-
tion feature of CVODES.

cvsRoberts_FSA_dns_constraints is the same as cvsRoberts_FSA_dns but imposes
the constraint u > 0.0 for all components.

cvsRoberts_FSA_klu is the same as cvsRoberts_FSA_dns but uses the SUNLINSOL_KLU
sparse direct linear solver module.

cvsRoberts_FSA_sps is the same as cvsRoberts_FSA_dns but uses the SUNLINSOL_SUPERLUMT
sparse direct linear solver module.

cvsAdvDiff _FSA non solves the semi-discrete form of an advection-diffusion equation
in 1-D.

CVODES computes both its solution and solution sensitivities with respect to the ad-
vection and diffusion coefficients. This program solves the problem with the option for
nonstiff systems, i.e. Adams method and fixed-point iteration.

cvsDiurnal FSA kry solves the semi-discrete form of a two-species diurnal kinetics
advection-diffusion PDE system in 2-D space (from cvsDiurnal kry).

CVODES computes both its solution and solution sensitivities with respect to two pa-
rameters affecting the kinetic rate terms. The problem is solved with the BDF/GMRES
method (i.e. using the SUNLINSOL_SPGMR linear solver) and the block-diagonal part of
the Newton matrix as a left preconditioner.

cvsRoberts_ASAi_dns solves a 3-species kinetics problem (from cvsRoberts_dns).
The adjoint capability of CVODES is used to compute gradients of a functional of the
solution with respect to the three reaction rate constants appearing in the model. This

program solves both the forward and backward problems with the BDF method, Newton
iteration with the SUNLINSOL_DENSE linear solver, and user-supplied Jacobian routines.

e cvsRoberts_ASAi_dns_constraints is the same as cvsRoberts_ASAi_dns but imposes
the constraint u > 0.0 for all components.

e cvsRoberts_ASAi kluis the same as cvsRoberts_ASAi_dns but uses the SUNLINSOL_KLU
sparse direct linear solver module.

e cvsRoberts_ASAi_sps is the same as cvsRoberts_ASAi_dns but uses the SUNLINSOL_SUPERLUMT
sparse direct linear solver module.

e cvsAdvDiff ASAi bnd solves a semi-discrete 2-D advection-diffusion equation (from
cvsAdvDiff _bnd).
The adjoint capability of CVODES is used to compute gradients of the average (over
both time and space) of the solution with respect to the initial conditions. This pro-
gram solves both the forward and backward problems with the BDF method, Newton
iteration with the SUNLINSOL_BAND linear solver, and user-supplied Jacobian routines.

e cvsFoodWeb_ASAi kry solves a stiff ODE system that arises from a system of partial

differential equations (from cvsKrylovDemo prec). The PDE system is a six-species
food web population model, with predator-prey interaction and diffusion on the unit
square in two dimensions.
The adjoint capability of CVODES is used to compute gradients of the average (over both
time and space) of the concentration of a selected species with respect to the initial
conditions of all six species. Both the forward and backward problems are solved with
the BDF/GMRES method (i.e. using the SUNLINSOL_SPGMR linear solver module) and
the block-diagonal part of the Newton matrix as a left preconditioner.

e cvsFoodWeb_ASAp kry solves the same problem as cvsFoodWeb_ASAi kry, but computes
gradients of the average over space at the final time of the concentration of a selected
species with respect to the initial conditions of all six species.

e cvsHessian ASA FSA is an example of using the forward-over-adjoint method for com-
puting 2nd-order derivative information, in the form of Hessian-times-vector products.

Supplied in the srcdir/examples/cvodes/parallel directory are the following seven parallel
examples (using the NVECTOR_PARALLEL module):

e cvsAdvDiff non p solves the semi-discrete form of a 1-D advection-diffusion equation.
This program solves the problem with the option for nonstiff systems, i.e. Adams
method and fixed-point iteration.

e cvsDiurnal kry_p is a parallel implementation of cvsDiurnal kry.

e cvsDiurnal kry_bbd_p solves the same problem as cvsDiurnal kry p, with BDF and
the GMRES linear solver, using a block-diagonal matrix with banded blocks as a pre-
conditioner, generated by difference quotients, using the module CVBBDPRE.

e cvsAdvDiff FSA non_p is a parallel version of cvsAdvDiff FSA non.

e cvsDiurnal FSA kry p is a parallel version of cvsDiurnal FSA kry.

e cvsAdvDiff ASAp non p solves a semi-discrete 1-D advection-diffusion equation (from
cvsAdvDiff non p).
The adjoint capability of CVODES is used to compute gradients of the average over space
of the solution at the final time with respect to both the initial conditions and the
advection and diffusion coefficients in the model. This program solves both the forward
and backward problems with the option for nonstiff systems, i.e. Adams method and
fixed-point iteration.

e cvsAtmDisp_ASAi kry bbd_p solves an adjoint sensitivity problem for an advection-
diffusion PDE in 2-D or 3-D using the BDF/GMRES method and the CVBBDPRE pre-
conditioner module on both the forward and backward phases.

The adjoint capability of CVODES is used to compute the gradient of the space-time aver-
age of the squared solution norm with respect to problem parameters which parametrize
a distributed volume source.

Supplied in sredir/examples/cvodes/C_openmp is an example, cvsAdvDiff bnd_omp, which
solves the same problem as cvsAdvDiff _bnd but using the OpenMP NVECTOR module.

In the following sections, we give detailed descriptions of some (but not all) of the sensitiv-
ity analysis examples. We do not discuss the examples for IVP integration; for those, the
interested reader should consult the cvODE Examples document [2]. Any CVODE program
will work with CVODES with only two modifications: (1) the main program should include
the header file cvodes.h instead of cvode.h, and (2) the loader command must reference
builddir/1ib/libsundials_cvodes. lib instead of builddir/1lib/libsundials_cvode. [ib.

We also give our output files for each of the examples described below, but users should
be cautioned that their results may differ slightly from these. Differences in solution values
may differ within the tolerances, and differences in cumulative counters, such as numbers of
steps or Newton iterations, may differ from one machine environment to another by as much
as 10% to 20%.

The final section of this report describes a set of tests done with CVODES in a parallel en-
vironment (using NVECTOR_PARALLEL) on a modification of the cvsDiurnal kry_p example.

In the descriptions below, we make frequent references to the cvODES User Guide [1].
All citations to specific sections (e.g. §4.2) are references to parts of that user guide, unless
explicitly stated otherwise.

Note The examples in the CVODES distribution were written in such a way as to compile
and run for any combination of configuration options during the installation of SUNDIALS (see
Appendix A in the User Guide). As a consequence, they contain portions of code that will
not typically be present in a user program. For example, all example programs make use of
the variables SUNDIALS_EXTENDED_PRECISION and SUNDIALS_DOUBLE_PRECISION to test if the
solver libraries were built in extended or double precision, and use the appropriate conversion
specifiers in printf functions. Similarly, all forward sensitivity examples can be run with or
without sensitivity computations enabled and, in the former case, with various combinations
of methods and error control strategies. This is achieved in these example through the
program arguments.

2 Forward sensitivity analysis example problems

For all the CVODES examples, any of three sensitivity method options (CV_SIMULTANEQUS,
CV_STAGGERED, or CV_STAGGERED1) can be used, and sensitivities may be included in the error
test or not (error control set on SUNTRUE or SUNFALSE, respectively).

The next three sections describe in detail two serial examples (cvsAdvDiff FSA non and
cvsRoberts_FSA_dns), and a parallel one (cvsDiurnal FSA kry_p). For details on the other
examples, the reader is directed to the comments in their source files.

2.1 A serial nonstiff example: cvsAdvDiff FSA non

As a first example of using CVODES for forward sensitivity analysis, we treat the simple
advection-diffusion equation for u = u(t, x)

@ — @ + @ (1)
ot @ 0x2 & Ox

for 0 <t <5, 0<z <2, and subject to homogeneous Dirichlet boundary conditions and
initial values given by
u(t,0) =0, wu(t,2)=0

x(2 — x)e* .

(2)

X

=

&
I

The nominal values of the problem parameters are g1 = 1.0 and g2 = 0.5. A system of MX
ODE:s is obtained by discretizing the x-axis with MX+2 grid points and replacing the first
and second order spatial derivatives with their central difference approximations. Since the
value of u is constant at the two endpoints, the semi-discrete equations for those points can
be eliminated. With u; as the approximation to u(t,x;), ; = i(Az), and Az = 2/(MX + 1),
the resulting system of ODEs, @ = f(¢,u), can now be written:

U1 — 2w+ Ui Uit1 — Ui—1
This equation holds for ¢ = 1,2,..., MX, with the understanding that ug = up;x+1 = 0.

The sensitivity systems for s' = Ou/dq; and s? = Ou/dqo are simply

dS% _ Sz'1+1 — 25} + sil,l . sil+1 — 51171 Wis1 — 2ui + Uiy
sH0) = 0.0
and
ds? st =287+ 87 n ST 1 — St L Wil — Ui
a0 (Az)? 275 (Ax) 2(Az) 5)
sH0) = 0.0.

This problem uses the Adams (non-stiff) integration formula and fixed-point iteration. It
is unrealistically simple*, but serves to illustrate use of the forward sensitivity capabilities in
CVODES.

*Increasing the number of grid points to better resolve the PDE spatially will lead to a stiffer ODE for
which the Adams integration formula will not be suitable.

The cvsAdvDiff FSA non.c file begins by including several header files, including the
main CVODES header file, the sundials_types.h header file for the definition of the realtype
type, and the NVECTOR_SERIAL header file for the definitions of the serial N_Vector type and
operations on such vectors. Following that are definitions of problem constants and a data
block for communication with the £ routine. That block includes the problem parameters
and the mesh dimension.

The main program begins by processing and verifying the program arguments, followed
by allocation and initialization of the user-defined data structure. Next, the vector of initial
conditions is created (by calling N_VNew_Serial) and initialized (in the function SetIC). The
next code block creates and allocates memory for the CVODES object.

If sensitivity calculations were turned on through the command line arguments, the main
program continues with setting the scaling parameters pbar and the array of flags plist. In
this example, the scaling factors pbar are used both for the finite difference approximation
to the right-hand sides of the sensitivity systems (4) and (5) and in calculating the absolute
tolerances for the sensitivity variables. The flags in plist are set to indicate that sensitivities
with respect to both problem parameters are desired. The array of NS = 2 vectors uS for the
sensitivity variables is created by calling N_VCloneVectorArray_Serial and set to contain
the initial values (s}(0) = 0.0, s2(0) = 0.0).

The next three calls set optional inputs for sensitivity calculations: the sensitivity vari-
ables are included or excluded from the error test (the boolean variable err_con is passed as
a command line argument), the control variable rho is set to a value ZERO = 0 to indicate
the use of second-order centered directional derivative formulas for the approximations to
the sensitivity right-hand sides, and the array of scaling factors pbar is passed to CVODES.
Memory for sensitivity calculations is allocated by calling CVodeSensInit1 which also speci-
fies the sensitivity solution method (sensi meth is passed as a command line argument), and
the initial conditions for the sensitivity variables. The problem parameters p and the arrays
pbar and plist are passed to CVodeSetSensParam.

Next, in a loop over the NOUT output times, the program calls the integration routine
CVode. On a successful return, the program prints the maximum norm of the solution u at
the current time and, if sensitivities were also computed, extracts and prints the maximum
norms of s'(¢) and s2(t). The program ends by printing some final integration statistics and
freeing all allocated memory.

The £ function is a straightforward implementation of Eqn. (3). The rest of the source file
contains definitions of private functions. The last two, PrintFinalStats and check_flag,
can be used with minor modifications by any CVODES user code to print final CVODES statistics
and to check return flags from CVODES interface functions, respectively.

Results generated by cvsAdvDiff FSA non are shown in Fig. 1. The output generated by
cvsAdvDiff FSA non when computing sensitivities with the CV_SIMULTANEQUS method and
full error control (cvsAdvDiff FSA non -sensi sim t) is as follows:

cvsAdvDiff FSA non sample output

1-D advection-diffusion equation, mesh size = 10
Sensitivity: YES (SIMULTANEOUS + FULL ERROR CONTROL)

1000 r r 50 . : .
bl 2
900 - R /' Seo d||u||*/dq,
oF N . - ————
800]
700 : : 1
-50 il
600 1 -
o 3
S 500 B =-100 B
= =]
= 2
400 F B ° d||ul|*/dq,
-150 : 7
300} : .]
200 1
-200f 1
100+]
0 i -250
0 05 1 15 2 0 05 1 15 2

Figure 1: Results for the cvsAdvDiff _FSA non example problem. The time evolution of the
squared solution norm, ||u||?, is shown on the left. The figure on the right shows the evolution
of the sensitivities of ||u||? with respect to the two problem parameters.

Solution 3.0529e+00

Sensitivity 1 3.8668e+00

Sensitivity 2 6.2020e-01
1.000e+00 3 4.126e-03 187

Solution 8.7533e-01

Sensitivity 1 2.1743e+00

Sensitivity 2 1.8909e-01
1.500e+00 2 1.181e-02 265

Solution 2.4948e-01

Sensitivity 1 9.1825e-01

Sensitivity 2 7.3921e-02
2.000e+00 2 9.433e-03 328

Solution 7.1095e-02

Sensitivity 1 3.4666e-01

Sensitivity 2 2.8228e-02
2.500e+00 2 3.946e-03 398

Solution 2.0259e-02

Sensitivity 1 1.2300e-01

Sensitivity 2 1.0085e-02
3.000e+00 2 9.370e-03 470

Solution 5.7731e-03

Sensitivity 1 4.1958e-02

Sensitivity 2 3.4556e-03
3.500e+00 2 1.010e-02 540

Solution 1.6451e-03

Sensitivity 1 1.3922e-02

Sensitivity 2 1.1669e-03
4.000e+00 2 4.255e-03 638

Solution 4.6881e-04

Sensitivity 1 4.5275e-03

Sensitivity 2 3.8633e-04

4.500e+00 1 5.757e-03 716

Solution 1.3404e-04
Sensitivity 1 1.4539e-03
Sensitivity 2 1.2576e-04

5.000e+00 1 6.420e-03 798
Solution 3.8640e-05
Sensitivity 1 4.6496e-04
Sensitivity 2 4.0583e-05

Final Statistics

nst = 798

nfe = 1408

netf = 1 nsetups = 0

nni = 1405 ncfn = 125

nfSe = 2816 nfeS = 5632

netfs = 0 nsetupsS = 0

nnis = 0 ncfnsS = 0

2.2 A serial dense example: cvsRoberts_FSA _dns

This example is a modification of the chemical kinetics example cvRoberts_dns described
in [2]. It computes, in addition to the solution of the IVP, sensitivities of the solution with
respect to the three reaction rates involved in the model. The ODEs are written as:

Y1 = —p1y1 + p2y2ys
2 = P1y1 — DP2y2ys — P35 (6)
i3 = Py ,

with initial conditions at tp = 0, y; = 1 and ys = y3 = 0. The nominal values of the reaction

rate constants are p; = 0.04, ps = 10* and p3 = 3 - 10". The sensitivity systems that are
solved together with (6) are

—D1 p2ys p2y2 f 0
$i= | pP1 —D2ys —2p3y2 —P2y2| Si+ e si(fo) = |0 , 1=1,2,3
pi

0 2p3y2 0 0 (7)

— 0
o _ y?il o _ —y;zy;s OF |y

= 5 —) - 2

op1 0 Opa 0 Ops3 Y2

The main program is described below with emphasis on the sensitivity related compo-
nents. These explanations, together with those given for the code cvRoberts_dns in [2], will
also provide the user with a template for instrumenting an existing simulation code to per-
form forward sensitivity analysis. As will be seen from this example, an existing simulation
code can be modified to compute sensitivity variables (in addition to state variables) by only
inserting a few CVODES calls into the main program.

First note that no new header files need be included. In addition to the constants already
defined in cvRoberts_dns, we define the number of model parameters, NP (= 3), the number
of sensitivity parameters, NS (= 3), and a constant ZERQ = 0.0.

As mentioned in §5.1, the user data structure data must provide access to the array of
model parameters as the only way for CVODES to communicate parameter values to the right-
hand side function f. In the cvsRoberts_FSA_dns example this is done by defining data to
be of type UserData, i.e. a pointer to a structure which contains an array of NP realtype
values.

Four user-supplied functions are defined. The function f, passed to CVodeInit, computes
the right-hand side of the ODE (6), while Jac computes the dense Jacobian of the prob-
lem and is attached to the dense linear solver module SUNLINSOL_DENSE through a call to
CVodeSetJacFn. The function £S computes the right-hand side of each sensitivity system
(7) for one parameter at a time and is therefore of type SensRhs1. Finally, the function ewt
computes the error weights for the WRMS norm estimations within CVODES.

The program prologue ends by defining six private helper functions. The first two,
ProcessArgs and WrongArgs (which would not be present in a typical user code), parse and
verify the command line arguments to cvsRoberts_FSA_dns, respectively. After each success-
ful return from the main CVODES integrator, the functions PrintOutput and PrintOutputS
print the state and sensitivity variables, respectively. The function PrintFinalStats is called
after completion of the integration to print solver statistics. The function check_flag is used
to check the return flag from any of the CVODES interface functions called by main.

The main program begins with definitions and type declarations. Among these, it defines
the vector pbar of NS scaling factors for the model parameters p, and the array yS of vectors
(of type N_Vector) which will contain the initial conditions and solutions for the sensitivity
variables. It also declares the variable data of type UserData which will contain the user-
defined data structure to be passed to CVODES and used in the evaluation of the ODE
right-hand sides.

The first code block in main deals with reading and interpreting the command line argu-
ments. cvsRoberts_FSA_dns can be run with or without sensitivity computations turned on
and with different selections for the sensitivity method and error control strategy.

The user’s data structure is then allocated and its field p is set to contain the values of the
three problem parameters. The next block of code is identical to that in cvRoberts_dns.c
(see [2]) and involves allocation and initialization of the state variables, and creation and ini-
tialization of cvode_mem, the CVODES solver memory. It specifies that a user-provided function
(ewt) is to be used for computing the error weights. It also attaches SUNLINSOL_DENSE, with a
non-NULL Jacobian function, as the linear solver to be used in the Newton nonlinear iteration.

If sensitivity analysis is enabled (through the command line arguments), the main pro-
gram will then set the scaling parameters pbar (pbar; = p;, which can typically be used for
nonzero model parameters). Next, the program allocates memory for yS, by calling the NVEC-
TOR_SERIAL function N_VCloneVectorArray Serial, and initializaes all sensitivity variables
to 0.0.

The call to CVodeSensInitl specifies the sensitivity solution method through the ar-
gument sensi meth (read from the command line arguments) as one of CV_SIMULTANEQUS,
CV_STAGGERED, or CV_STAGGERED1. It also specifies the user-defined routine, £S, for evaluation
of the right-hand sides of sensitivity equations.

The next three calls specify optional inputs for forward sensitivity analysis: specifying
that sensitivity tolerances are to be based on pbar, the error control strategy (read from the
command line arguments), and the information on the model parameters. In this example,

10

x 10 x 10~
0

T - ﬁ25 —
—, 1
dy1/dp1
. dy,/dp, A
. dy,/dp, H2
41.5
4 N o
] = o
o 12 428
> >
1 © ©
41
0.5
‘8 10 0 -4
10 10

Figure 2: Results for the cvsRoberts_FSA_dns example problem: time evolution of y; and its
sensitivities with respect to the three problem parameters. (Note the four different vertical
scales.)

only pbar is needed for the estimation of absolute sensitivity variable tolerances; neither p nor
plist is required since the sensitivity right-hand sides are computed in the user function £S.
As a consequence, we pass NULL for the corresponding arguments in CVodeSetSensParams.

Note that this example uses the default estimates for the relative and absolute tolerances
rtolS and atol$ for sensitivity variables, based on the tolerances for state variables and the
scaling parameters pbar (see §2.6 for details).

Next, in a loop over the NOUT output times, the program calls the integration routine CVode
which, if sensitivity analysis was initialized through the call to CVodeSensInitl, computes
both state and sensitivity variables. However, CVode returns only the state solution at tout
in the vector y. The program tests the return from CVode for a value other than CV_SUCCESS
and prints the state variables. Sensitivity variables at tout are loaded into yS by calling
CVodeGetSens. The program tests the return from CVodeGetSens for a value other than
CV_SUCCESS and then prints the sensitivity variables.

Finally, the program prints some statistics (function PrintFinalStats) and deallocates
memory through calls to N_VDestroy_Serial, N VDestroyVectorArray Serial, CVodeFree,
and free for the user data structure.

The user-supplied functions £ (for the right-hand side of the original ODEs) and Jac (for
the system Jacobian) are identical to those in cvRoberts_dns.c, with the notable exeption
that model parameters are extracted from the user-defined data structure data, which must
first be cast to the UserData type. Similarly, the user-supplied function ewt is identical to
that in cvRoberts_dns_uw.c. The user-supplied function £S computes the sensitivity right-
hand side for the iS-th sensitivity equation.

Results generated by cvsRoberts_FSA_dns are shown in Fig. 2. The following output is
generated by cvsRoberts _FSA _dns when computing sensitivities with the CV_SIMULTANEQUS

11

method and full error control (cvsRoberts FSA_ dns -sensi sim t):

3-species chemical kinetics problem

Sensitivity:

cvsRoberts_FSA_dns sample output

YES (SIMULTANEOUS + FULL ERROR CONTROL)

4.000e-01

.881e-02 115

Solution

Sensitivity
Sensitivity
Sensitivity

.8517e-01
.5595e-01
.5431e-08
.5833e-11

.3864e-05
.9025e-04
.1309e-10
.2900e-13

.4794e-02

3.5556e-01

9.5218e-08
.6362e-11

4.000e+00

.363e-01 138

Solution

Sensitivity
Sensitivity
Sensitivity

.0652e-01
.8761e+00
.9614e-06
.9334e-10

.2405e-05
.7922e-04
.8305e-10
.7626e-13

9.4459e-02

.8759e+00
2.9608e-06
.9362e-10

4.000e+01

4.000e+02

.485e+00 219

Solution

Sensitivity
Sensitivity
Sensitivity

.882e+00 331

Solution

Sensitivity
Sensitivity
Sensitivity

.1583e-01
.2475e+00
.3731e-05
.2883e-09

.5052e-01
.9584e+00
.2738e-05
.7896e-09

.1856e-06
.5913e-05
.3573e-10
.1380e-13

.2229e-06
.5431e-06
.2605e-11
.9948e-14

.8416e-01
.2475e+00
.3730e-05

2.2884e-09

.4947e-01
.9584e+00
.2738e-05
.7897e-09

4.000e+03

.090e+02 486

Solution

Sensitivity
Sensitivity
Sensitivity

.8317e-01
.7500e+00
.8809e-05
.1348e-09

.9403e-07
.9957e-06
.3136e-11
.8757e-14

.1683e-01
.7500e+00
.8809e-05
.1348e-09

4.000e+04

.178e+03 588

Solution

Sensitivity
Sensitivity
Sensitivity

.8977e-02
.5748e+00
.2869e-06
.0478e-09

.6215e-07
.7620e-06
.1002e-11
.5362e-15

9.6102e-01

.5748e+00
6.2869e-06
.0478e-09

4.000e+05

.514e+04 645

Solution

Sensitivity
Sensitivity
Sensitivity

.9387e-03
.3639e-01
.4525e-07
.56751e-10

.9852e-08
.5861e-07
.8334e-12
.3629e-16

.9506e-01
.3639e-01
9.4525e-07
.5751e-10

4.000e+06

.323e+05 696

Solution

Sensitivity
Sensitivity
Sensitivity

.1684e-04
.5667e-02
.0266e-07
.7111e-11

12

.0684e-09
.1064e-08
.0424e-13
.8513e-17

.9948e-01
.5667e-02
1.0266e-07

1.7111e-11

4.000e+07 4 1.776e+06 753

Solution 5.2039e-05 2.0817e-10 9.9995e-01
Sensitivity 1 -2.5991e-03 -5.1931e-09 2.5991e-03
Sensitivity 2 1.0396e-08 2.0772e-14 -1.0397e-08
Sensitivity 3 -1.7330e-12 -6.9328e-18 1.7330e-12

4.000e+08 4 2.766e+07 802

Solution 5.2106e-06 2.0842e-11 9.9999e-01
Sensitivity 1 -2.6063e-04 -5.2149e-10 2.6063e-04
Sensitivity 2 1.0425e-09 2.0859e-15 -1.0425e-09
Sensitivity 3 -1.7366e-13 -6.9467e-19 1.7367e-13

4.000e+09 2 4.183e+08 836

Solution 5.1881e-07 2.0752e-12 1.0000e-00
Sensitivity 1 -2.5907e-05 -5.1717e-11 2.5907e-05
Sensitivity 2 1.0363e-10 2.0687e-16 -1.0363e-10
Sensitivity 3 -1.7293e-14 -6.9174e-20 1.7293e-14

4.000e+10 2 3.799e+09 859

Solution 6.5181e-08 2.6072e-13 1.0000e-00
Sensitivity 1 -2.4884e-06 -3.3032e-12 2.4884e-06
Sensitivity 2 9.9534e-12 1.3213e-17 -9.9534e-12
Sensitivity 3 -2.1727e-15 -8.6908e-21 2.1727e-15

Final Statistics

nst = 859

nfe = 1222

netf = 29 nsetups = 142

nni = 1218 ncfn = 4

nfSe = 3666 nfeS = 0

netfs = 0 nsetupsS = 0

nnisS = 0 ncfnS = 0

nje = 24 nfelS = 0

2.3 A parallel example with user preconditioner: cvsDiurnal FSA kry p

As an example of using the forward sensitivity capabilities in CVODES with the Krylov linear
solver SUNLINSOL_SPGMR and the NVECTOR_PARALLEL module, we describe a test problem
(derived from cvDiurnal kry_p) that solves the semi-discrete form of a two-species diurnal
kinetics advection-diffusion PDE system in 2-D space, for which we also compute solution
sensitivities with respect to problem parameters (q; and g2) that appear in the kinetic rate
terms.
The PDE system is
act 0?ct act 0 act

Y _ k2 C ve 7KU e i 1 2 i=1.92
nawz TV ag T g, oWy, (. (1=1,2), (8)

where the superscripts ¢ are used to distinguish the two chemical species, and where the

13

reaction terms are given by

Rl(cl, 2, t) = —qicted — gt + 2q3(t)03 + Q4(t)02 ,

9
R2(61,02,t) = q10103 - q20102 — q4(t)02 .)

The spatial domain is 0 < x < 20, 30 < y < 50 (in km). The various constants and
parameters are: Kj, = 4.0-1076, V = 1073, K, = 107 8exp(y/5), q1 = 1.63-10716, ¢o =
4.66-10716, ¢3 =3.7-10'6, and the diurnal rate constants are defined as:

o _ | exp[—ai/sinwt], for sinwt >0 .
ai(t) = { 0, for sinwt < 0 (i=3,4),

where w = 7/43200, a3z = 22.62, a4 = 7.601. The time interval of integration is [0, 86400],
representing 24 hours measured in seconds.

Homogeneous Neumann boundary conditions are imposed on each boundary, and the
initial conditions are

cl(z,y,0) =10%(2)B(y) , A(z,y,0) = 10%a(2)B(y) ,
afr) =1—(0.1z — 1)* + (0.1z — 1)1/2 , (10)
Bly) =1—(0.1y —4)% + (0.1y — 4)*/2 .

We discretize the PDE system with central differencing, to obtain an ODE system u = f(¢, u)
representing (8). In this case, the discrete solution vector is distributed across many processes.
Specifically, we may think of the processes as being laid out in a rectangle, and each process
being assigned a subgrid of size MXSUBXMYSUB of the © — y grid. If there are NPEX processes
in the z direction and NPEY processes in the y direction, then the overall grid size is MXxMY
with MX=NPEX xMXSUB and MY=NPEY xMYSUB, and the size of the ODE system is 2-MX-MY.

To compute f in this setting, the processes pass and receive information as follows. The
solution components for the bottom row of grid points assigned to the current process are
passed to the process below it, and the solution for the top row of grid points is received
from the process below the current process. The solution for the top row of grid points for
the current process is sent to the process above the current process, while the solution for
the bottom row of grid points is received from that process by the current process. Similarly,
the solution for the first column of grid points is sent from the current process to the process
to its left, and the last column of grid points is received from that process by the current
process. The communication for the solution at the right edge of the process is similar. If this
is the last process in a particular direction, then message passing and receiving are bypassed
for that direction.

The overall structure of main is very similar to that of the code cvsRoberts_FSA _dns de-
scribed above, with differences arising from the use of the parallel NVECTOR module, NVEC-
TOR_PARALLEL. On the other hand, the user-supplied routines in cvsDiurnal FSA kry p,
f for the right-hand side of the original system, Precond for the preconditioner setup, and
PSolve for the preconditioner solve, are identical to those defined in the example program
cvDiurnal kry_p described in [2]. The only difference is in the routine fcalc, which operates
on local data only and contains the actual calculation of f(t,u), where the problem parameters
are first extracted from the user data structure data. The program cvsDiurnal FSA kry p
defines no additional user-supplied routines, as it uses the CVODES internal difference quotient
routines to compute the sensitivity equation right-hand sides.

14

7 1" 22

x 10 x 10 x 10 x 10
4 5 5 10
—_C top-right
—C, top-right
-=C bottom-left
- -G bottom-left 0

dc2/dq 4

|
N
N

—20
10° 10

Figure 3: Results for the cvsDiurnal FSA kry_p example problem: time evolution of ¢; and
co at the bottom-left and top-right corners (left) and of their sensitivities with respect to ¢;.

Sample results generated by cvsDiurnal FSA kry_p are shown in Fig. 3. These results
were generated on a (2 -40) x (2 -40) spatial grid. The following output is generated by
cvsDiurnal FSA kry_p when computing sensitivities with the CV_SIMULTANEQOUS method and
full error control (mpirun -np 4 cvsDiurnal FSA kry p -sensi sim t):

cvsDiurnal FSA kry_ p sample output

2-species diurnal advection-diffusion problem
Sensitivity: YES (SIMULTANEQOUS + FULL ERROR CONTROL)

T Q H NST Bottom left Top right

7.200e+03 3 3.475e+01 345
Solution 1.0468e+04 1.1185e+04
2.5267e+11 2.6998e+11
Sensitivity 1 -6.4201e+19 -6.8598e+19
7.1177e+19 7.6556e+19
Sensitivity 2 -4.3853e+14 -5.0065e+14
-2.4407e+18 -2.7843e+18
1.440e+04 3 5.071e+01 862
Solution 6.6590e+06 7.3008e+06
2.5819e+11 2.8329e+11
Sensitivity 1 -4.0848e+22 -4.4785e+22
5.9549e+22 6.7173e+22
Sensitivity 2 -4.5235e+17 -5.4318e+17
-6.5418e+21 -7.8315e+21

2.160e+04 3 5.422e+01 1115

15

Solution 2.6650e+07 2.9308e+07
2.9928e+11 3.3134e+11
Sensitivity 1 -1.6346e+23 -1.7976e+23
3.8203e+23 4.4991e+23
Sensitivity 2 -7.6601e+18 -9.4433e+18
-7.6459e+22 -9.4501e+22

2.880e+04

3 4.027e+01

Solution 8.7021e+06 9.6501e+06
3.3804e+11 3.7510e+11
Sensitivity 1 -5.3375e+22 -5.9187e+22
5.4487e+23 6.7430e+23
Sensitivity 2 -4.8855e+18 -6.1040e+18
-1.7194e+23 -2.1518e+23

3.600e+04

4 6.446e+01

Solution 1.4040e+04 1.5609e+04
3.3868e+11 3.7652e+11
Sensitivity 1 -8.6141e+19 -9.5762e+19
5.2718e+23 6.6030e+23
Sensitivity 2 -8.4328e+15 -1.0549e+16
-1.8439e+23 -2.3096e+23

4.320e+04

4 1.552e+02

Solution -6.7943e-09 -1.7531e-08
3.3823e+11 3.8035e+11
Sensitivity 1 1.5377e+08 -1.8226e+09
5.2753e+23 6.7448e+23
Sensitivity 2 4.9296e+03 -1.7707e+04
-1.8454e+23 -2.3595e+23

5.040e+04

4 1.552e+02

Solution -3.3333e-09 -1.0074e-08
3.3582e+11 3.8645e+11
Sensitivity 1 7.6593e+08 2.3212e+09
5.2067e+23 6.9664e+23

5.760e+04

5 2.333e+02

Sensitivity 2 3.2953e+07 1.2254e+08
-1.8214e+23 -2.4370e+23
Solution -8.0165e-13 -2.6806e-12

3.3203e+11 3.9090e+11

Sensitivity 1 -1.3115e+05 -4.2823e+05

5.0825e+23 7.1205e+23
Sensitivity 2 6.8742e+01 1.6059e+02
-1.7780e+23 -2.4910e+23

6.480e+04

Solution

.8173e-08
.3130e+11

.8429e-08
.9634e+11

.2918e+09
.0442e+23

.9585e+09
.3274e+23

.1238e+05
.7646e+23

.7790e+06
.5633e+23

7.200e+04

.1403e-08
.3297e+11

.9110e-08
.0389%e+11

.8126e+08
.0783e+23

.1340e+09
.6382e+23

.8340e+07
.7765e+23

.6839e+08
.6721e+23

7.920e+04

.8775e-18
.3344e+11

.7563e-17
.1203e+11

.2984e+02

5.0730e+23

.4037e-01
.7T74T7e+23

.7701e+02
.9960e+23

.1248e+00
.7972e+23

8.640e+04

.55690e-20
.3518e+11

.5317e-19
.1625e+11

.6342e+00

5.1171e+23

.6895e-03
.7901e+23

.8016e+00
.2142e+23

.0306e-02
.8736e+23

Final Statistics

nst

nfe
netf
nni

nfSe
netfs
nnis

5 2.801e+02 1893
4 1.003e+02 2580
4 4.453e+02 2608
5 7.396e+02 2619
2619
3582
150 nsetups =
3580 ncfn =
7164 nfeS =
0 nsetupsS =
0 ncfnS =

436

14328

17

3 Adjoint sensitivity analysis example problems

The next three sections describe in detail a serial example (cvsRoberts_ASAi_dns) and two
parallel examples (cvsAdvDiff ASAp non p and cvsAtmDisp ASAi kry bbd p) that perform
adjoint sensitivity analysis. For details on the other examples, the reader is directed to the
comments in their source files.

3.1 A serial dense example: cvsRoberts_ASAi_dns

As a first example of using CVODES for adjoint sensitivity analysis, we examine the chemical
kinetics problem (from cvsRoberts_FSA_dns)

Y1 = —p1Yy1 + p2y2y3

2 = P1Y1 — P2Y2y3 — D3Y5
i3 = Py

y(to) = vo,

(11)

for which we want to compute the gradient with respect to p of

T
G(p) = / yadt, (12)

without having to compute the solution sensitivities dy/dp. Following the derivation in §2.7,
and taking into account the fact that the initial values of (11) do not depend on the parameters
p, by (2.21) this gradient is simply

dG r
G [sy 13
0

where g(t,y,p) = y3, f is the vector-valued function defining the right-hand side of (11), and
A is the solution of the adjoint problem (2.20),

A= _(fy)T)‘ - (gy)T

AMT) = 0. (14)

In order to avoid saving intermediate A values just for the evaluation of the integral in
(13), we extend the backward problem with the following N, quadrature equations

E=gp +f A
§(T) =0,

which yield {(tg) = — ftf(gg + fg A)dt and thus dG/dp = —€7(tp). Similarly, the value of
G in (12) can be obtained as G = —((tp), where (is solution of the following quadrature
equation:

(15)

(=9=1ys3
¢(T) =0.

The main program and the user-defined routines are described below, with emphasis on
the aspects particular to adjoint sensitivity calculations.

(16)

18

The calling program includes the CVODES header files cvodes.h for CVODES definitions
and interface function prototypes, the header file nvector_serial.h for the definition of the
serial implementation of the NVECTOR module, NVECTOR_SERIAL, the header files sunmatrix dense.h
and sunlinsol_dense.h for the dense SUNMATRIX and SUNLINSOL modules, the header file
sundials_types.h for the definition of realtype and sunindextype, and the file sundials math.h
for the definition of the SUNRabs macro. This program also includes two user-defined acces-
sor macros, Ith and IJth, that are useful in writing the problem functions in a form closely
matching their mathematical description, i.e. with components numbered from 1 instead of
from 0. Following that, the program defines problem-specific constants and a user-defined
data structure, which will be used to pass the values of the parameters p to various user rou-
tines. The constant STEPS defines the number of integration steps between two consecutive
checkpoints. The program prologue ends with the prototypes of four user-supplied functions
that are called by cvODES. The first two provide the right-hand side and dense Jacobian for
the forward problem, and the last two provide the right-hand side and dense Jacobian for
the backward problem.

The main function begins with type declarations and continues with the allocation and
initialization of the user data structure, which contains the values of the parameters p. Next,
it allocates and initializes y with the initial conditions for the forward problem, allocates
and initializes q for the quadrature used in computing the value GG, and finally sets the
scalar relative tolerance reltolQ and vector absolute tolerance abstolQ for the quadrature
variables. No tolerances for the state variables are defined since cvsRoberts_ASAi_dns uses
its own function to compute the error weights for WRMS norm estimates of state solution
vectors.

The call to CVodeCreate creates the main integrator memory block for the forward in-
tegration and specifies the CV_BDF integration method. The call to CVodeInit initializes
the forward integration by specifying the initial conditions. The call to CVodeWFtolerances
specifies a function that computes error weights. The next call specifies the optional user
data pointer data. The linear solver is selected to be SUNLINSOL_DENSE through calls to
create the template Jacobian matrix and dense linear solver objects (SUNDenseMatrix and
SUNLinSol Dense), and to attach these to the CVODES integrator via the call to CVodeSetLinearSolver.
The user-provided Jacobian routine Jac is specified through a call to CVodeSetJacFn.

The next code block initializes quadrature computations in the forward phase, by allo-
cating CVODES memory for quadrature integration (the call to CVodeQuadInit specifies the
right-hand side £Q of the quadrature equation and the initial values of the quadrature vari-
able), setting the integration tolerances for the quadrature variables, and finally including
the quadrature variable in the error test.

Allocation for the memory block of the combined forward-backward problem is accom-
plished through the call to CVadjInit which specifies STEPS = 150, the number of steps
between two checkpoints, and specifies cubic Hermite interpolation.

The call to CVodeF requests the solution of the forward problem to TOUT. If success-
ful, at the end of the integration, CVodeF will return the number of saved checkpoints
in the argument ncheck (optionally, a list of the checkpoints can be obtained by calling
CVodeGetAdjCheckPointsInfo and the checkpoint information printed).

The next segment of code deals with the setup of the backward problem. First, a serial
vector yB of length NEQ is allocated and initalized with the value of A(= 0.0) at the final
time (TB1 = 4.0E7). A second serial vector gB of dimension NP is created and initialized
to 0.0. This vector corresponds to the quadrature variables £ whose values at tg will be
the components of the desired gradient of 0G/Jp (after a sign change). Following that, the

19

program sets the relative and absolute tolerances for the backward integration.

The cvODES memory for the backward integration is created and allocated by the calls to
the interface routines CVodeCreateB and CVodeInitB which specify the CV_BDF integration
method, among other things. The dense linear solver is created and initialized by calling the
SUNDenseMatrix, SUNLinSol Dense and CVodeSetLinearSolverB routines, and specifying a
non-NULL Jacobian routine JacB and user data data.

The tolerances for the integration of quadrature variables, reltolB and abstolQB, are
specified through CVodeQuadSStolerancesB. The call to CVodeSetQuadErrConB indicates
that £ should be included in the error test. Quadrature computation is initialized by calling
CVodeQuadInitB which specifies the right-hand side of the quadrature equations as £QB.

The actual solution of the backward problem is accomplished through two calls to CVodeB
— one for intermediate output at ¢ = 40, and one for the final time TO = 0. At each point,
the backward solution yB (= \) is obtained with a call to CVodeGetB and the forward solution
with a call to CVodeGetAdjY. The values of the quadrature variables £ at time TO are loaded
in gB by calling the extraction routine CVodeGetQuadB. The negative of gB gives the gradient
0G | Op.

The main program then carries out a second backward problem. It calls to CVodeReInitB
and CVodeQuadReInitB to re-initialize the backward memory block for a new adjoint com-
putation with a different final time (TB2 = 50). This is followed by two calls to CVodeB, one
for intermediate output at t = 40 and one for the final values at ¢ = 0. Finally, the gradient
0G /0p of the second function G is printed.

The main program ends by freeing previously allocated memory by calling CVodeFree
(for the cVODES memory for the forward problem), CVadjFree (for the memory allocated for
the combined problem), and N_VFree_Serial (for the various vectors).

The user-supplied functions f and Jac for the right-hand side and Jacobian of the forward
problem are straightforward expressions of its mathematical formulation (11). The function
ewt is the same as the one for cvRoberts_dns uw.c. The function £Q implements (16), while
B, JacB, and £QB are mere translations of the backward problem (14) and (15).

The output generated by cvsRoberts_ASAi_dns is shown below.

cvsRoberts_ASAi_dns sample output

Adjoint Sensitivity Example for Chemical Kinetics

ODE: dy1/dt
dy2/dt
dy3/dt

“plxyl + p2xy2xy3
pl*yl - p2*y2*xy3 - p3*(y2)~2
p3*(y2)-2

Find dG/dp for
G = int_t0"tBO g(t,p,y) dt
g(t,p,y) = y3

Create and allocate CVODES memory for forward runs

Forward integration ... done (nst = 766)
ncheck = 5
G 3.9983e+07

Create and allocate CVODES memory for backward run

Backward integration from tBO = 4.0000e+07
returned t: 4.0000e+01

tout: 4.0000e+01

lambda (t): 3.9967e+07 3.9967e+07 3.9967e+07
y(t): 7.1583e-01 9.1855e-06 2.8416e-01

returned t: 0.0000e+00

lambda (t0): 3.9967e+07 3.9967e+07 3.9967e+07
y(t0): 1.0000e+00 0.0000e+00 0.0000e+00
dG/dp: 7.6842e+05 -3.0691e+00 5.1144e-04

Re-initialize CVODES memory for backward run

Backward integration from tBO = 5.0000e+01
returned t: 4.0000e+01

tout: 4.0000e+01

lambda (t): 2.8959e-01 1.7624e+00 9.3567e+00
y(t): 7.1583e-01 9.1855e-06 2.8416e-01

returned t: 0.0000e+00

lambda (t0): 8.4190e+00 1.6097e+01 1.6097e+01
y(t0): 1.0000e+00 0.0000e+00 0.0000e+00
dG/dp: 1.7341e+02 -5.0590e-04 8.4321e-08

Free memory

3.2 A parallel nonstiff example: cvsAdvDiff ASAp _non_p

As an example of using the CVODES adjoint sensitivity module with the parallel vector mod-
ule NVECTOR_PARALLEL, we describe a sample program that solves the following problem:

Consider the 1-D advection-diffusion equation

ou_ o o
ot~ Plog2z TPa,
O=2g< <21 =2

0=ty <t<t;=25,

with boundary conditions u(t, o) = u(t,z1) = 0, V¢, and initial condition wu(to, x) = ug(x)
x(2 — z)e**. Also consider the function

g(t) = /:1 u(t,z)dz .

0

21

(17)

We wish to find, through adjoint sensitivity analysis, the gradient of g(t;) with respect to
p = [p1;p2] and the perturbation in g(t;) due to a perturbation dug in ug.

The approach we take in the program cvsAdvDiff ASAp non_p is to first derive an adjoint
PDE which is then discretized in space and integrated backwards in time to yield the desired
sensitivities. A straightforward extension to PDEs of the derivation given in §2.7 gives

dg [o O*u Ou
and .
ogle, = / w(to, z)oug(x)dx , (19)
o

where p is the solution of the adjoint PDE

ou 0*u o
B —|—p1@ —p2=—=0
N(tfvx) =1

pu(t, zo) = p(t,z1) =0.

(20)

Both the forward problem (17) and the backward problem (20) are discretized on a uniform
spatial grid of size M, + 2 with central differencing and with boundary values eliminated,
leaving ODE systems of size N = M, each. As always, we deal with the time quadratures in
(18) by introducing the additional equations

: o 0%u
61:/ d‘fl":u@a gl(tf)zov
R (21)
: U
b= [g ol =0,
yielding

;Zf)(tf) = — [&1(t0); &a(to)]

The space integrals in (19) and (21) are evaluated numerically, on the given spatial mesh,
using the trapezoidal rule.

Note that 1(tg,z*) is nothing but the perturbation in g(t;) due to a d-function pertur-
bation dug(z) = 0(x — z*) in the initial conditions. Therefore, pu(to,z) completely describes
dg(ty) for any perturbation dug.

Both the forward and the backward problems are solved with the option for nonstiff
systems, i.e. using the Adams method with fixed-point iteration for the solution of the non-
linear systems. The overall structure of the main function is very similar to that of the code
cvsRoberts_ASAi_dns discussed previously with differences arising from the use of the par-
allel NVECTOR module. Unlike cvsRoberts_ASAi_dns, the example cvsAdvDiff ASAp non_p
illustrates computation of the additional quadrature variables by appending NP equations to
the adjoint system. This approach can be a better alternative to using special treatment of
the quadrature equations when their number is too small for parallel treatment.

Besides the parallelism implemented by CVODES at the NVECTOR level, this example uses
MPI calls to parallelize the calculations of the right-hand side routines £ and fB and of
the spatial integrals involved. The forward problem has size NEQ = MX, while the backward
problem has size NB = NEQ + NP, where NP = 2 is the number of quadrature equations in

22

40
//——"\\ o
= 3
or 2
- 3
-
//
7
7/
7/
y/
7/
7
7/
-
7
’/
-~
-
-~
o
dl —
=
0 — I I I I I I I 0

Figure 4: Results for the cvsAdvDiff _ASAp non_p example problem. The gradient of g(ty)
with respect to the initial conditions ug is shown superimposed over the values wuy.

(21). The use of the total number of available processes on two problems of different sizes
deserves some comments, as this is typical in adjoint sensitivity analysis. Out of the total
number of available processes, namely nprocs, the first npes = nprocs - 1 processes are
dedicated to the integration of the ODEs arising from the semi-discretization of the PDEs
(17) and (20), and receive the same load on both the forward and backward integration
phases. The last process is reserved for the integration of the quadrature equations (21),
and is therefore inactive during the forward phase. Of course, for problems involving a
much larger number of quadrature equations, more than one process could be reserved for
their integration. An alternative would be to redistribute the NB backward problem variables
over all available processes, without any relationship to the load distribution of the forward
phase. However, the approach taken in cvsAdvDiff ASAp non_p has the advantage that
the communication strategy adopted for the forward problem can be directly transferred to
communication among the first npes processes during the backward integration phase.

We must also emphasize that, although inactive during the forward integration phase, the
last process must participate in that phase with a zero local array length. This is because,
during the backward integration phase, this process must have its own local copy of variables
(such as cvadj mem) that were set only during the forward phase.

Using MX = 40 on 4 processes, the gradient of g(t;) with respect to the two problem
parameters is obtained as dg/dp(ty) = [—1.13856;—1.01023]. The gradient of g(ty) with
respect to the initial conditions is shown in Fig. 4. The gradient is plotted superimposed over
the initial conditions. Sample output generated by cvsAdvDiff ASAp non_p, for MX = 20, is
shown below.

{ cvsAdvDiff ASAp non_p sample output

23

g(tf) = 2.444739e-02

dgdp (tf)
[1]: -1.502107e-01
[2]: -1.097739e-02

mu(t0)
[1]: 2.776607e-04
[2]: 5.619775e-04
[3]: 8.477404e-04
[4]: 1.126412e-03
[5]: 1.393777e-03
[6]: 1.639607e-03
[7]1: 1.861184e-03
[8]: 2.047397e-03
[91: 2.197434e-03
[10]: 2.300275e-03
[11]: 2.357283e-03
[12]: 2.358593e-03
[13]: 2.307827e-03
[14]: 2.197332e-03
[15]: 2.032873e-03
[16]: 1.809960e-03
[17]: 1.536162e-03
[18]: 1.210898e-03
[19]: 8.430003e-04
[20]: 4.362428e-04

3.3 A parallel example using CVBBDPRE: cvsAtmDisp_ASAi_kry bbd p

As a more elaborate example of a parallel adjoint sensitivity calculation, we describe next
the program cvsAtmDisp_ASAi kry_ bbd p provided with cVODES. This example models an
atmospheric release with an advection-diffusion PDE in 2-D or 3-D and computes the gradient
with respect to source parameters of the space-time average of the squared norm of the
concentration. Given a known velocity field v(¢,z) and source function S, the transport
equation for the concentration c(t,z) in a domain € is given by

%—kVQC—i-v-Vc—I—S:O,in (0,T) x Q

ot
Oc . (22)
— =g, on (O,Z)><8S2

c=co(r),inNatt=0,

where is a box in R? or R? and n is the normal to the boundary of Q. We assume
homogeneous boundary conditions (¢ = 0) and a zero initial concentration everywhere in 2
(co(x) = 0). The wind field has only a nonzero component in the z direction given by a
Poiseuille profile along the direction y.

Using adjoint sensitivity analysis, the gradient of

T
G =3 [[et anar (23)

is obtained as
dG

dp;

:/t/Q)\(t,x)é(:p—xi)dﬁdt:/t)\(t,:vi)dt, (24)

24

where z; is the location of the source of intensity S(z;) = p;, and A is solution of the adjoint
PDE

—%—kv2)\—v-)\:c(t,$),in (T,0) x Q
(EVA+vA)-n =0, on (0,T) x 9 (25)
A=0,inQatt="T.

The PDE (22) is semi-discretized in space with central finite differences, with the boundary
conditions explicitly taken into account by using layers of ghost cells in every direction. If the
direction 2’ of is discretized into m; intervals, this leads to a system of ODEs of dimension
N = Hcll(mZ + 1), with d = 2, or d = 3. The source term S is parameterized as a piecewise
constant function and yielding N parameters in the problem. The nominal values of the
source parameters correspond to two Gaussian sources.

The source code as supplied runs the 2-D problem. To obtain the 3-D version, add a line
#define USE3D at the top of main.

The adjoint PDE (25) is discretized to a system of ODEs in a similar fashion. The space
integrals in (23) and (24) are simply approximated by their Riemann sums, while the time
integrals are resolved by appending pure quadrature equations to the systems of ODEs.

We use BDF with the SUNLINSOL_SPGMR linear solver module and the CVBBDPRE pre-
conditioner for both the forward and the backward integration phases. The value of G
is computed on the forward phase as a quadrature, while the components of the gradient
dG /dp are computed as quadratures during the backward integration phase. All quadrature
variables are included in the corresponding error tests.

Communication between processes for the evaluation of the ODE right-hand sides involves
passing the solution on the local boundaries (lines in 2-D, surfaces in 3-D) to the 4 (6 in 3-D)
neighboring processes. This is implemented in the function f_comm, called in f and £B before
evaluation of the local residual components. Since there is no additional communication
required for the CVBBDPRE preconditioner, a NULL pointer is passed for gloc and glocB in
the calls to CVBBDPrecInit and CVBBDPrecInitB, respectivley.

For the sake of clarity, the cvsAtmDisp_ASAi kry bbd_p example does not use the most
memory-efficient implementation possible, as the local segment of the solution vectors (y on
the forward phase and yB on the backward phase) and the data received from neighboring
processes is loaded into a temporary array y_ext which is then used exclusively in computing
the local components of the right-hand sides.

Note that if cvsAtmDisp_ASAi kry bbd p is given any command line argument, it will
generate a series of MATLAB files which can be used to visualize the solution. The results
of a 2-D simulation and adjoint sensitivity analysis with cvsAtmDisp_ASAi kry_bbd p on a
80 x 80 grid and 2 x 4 = 8 processes are shown in Fig. 5. Results in 3-Df, on a 80 x 80 x 40
grid and 2 X 4 x 2 = 16 processes are shown in Figs. 6 and 7. A sample output generated
by cvsAtmDisp_ASAi kry bbd_p for a 2D calculation is shown below.

cvsAtmDisp_ASAi kry bbd_p sample output

Parallel Krylov adjoint sensitivity analysis example
2D Advection diffusion PDE with homogeneous Neumann B.C.
Computes gradient of G = int_t_Omega (c_i"2) dt dOmega
with respect to the source values at each grid point.

fThe name of the executable for the 3-D version is cvsAtmDisp_ASAi_kry_bbd_p3D.

25

y 0 o X

Figure 5: Results for the cvsAtmDisp_ASAi kry bbd_p example problem in 2D. The gradient
with respect to the source parameters is pictured on the left. On the right, the gradient was
color-coded and superimposed over the nominal value of the source parameters.

Figure 6: Results for the cvsAtmDisp_ASAi kry bbd_p example problem in 3D. Nominal
values of the source parameters.

26

Figure 7: Results for the cvsAtmDisp_ASAi kry bbd_p example problem in 3D. Two isosur-
faces of the gradient with respect to the source parameters. They correspond to values of
0.25 (green) and 0.4 (blue).

Domain:
0.000000 < x < 20.000000 mx = 80 npe_x = 2
0.000000 < y < 20.000000 my = 80 mnpe_y = 2

Begin forward integration... done. G = 2.395757e+03

Final Statistics..

lenrw = 85429 leniw = 236

1lrw = 78786 1liw = 126

nst = 169

nfe = 172 nfel = 303

nni = 169 nli = 303

nsetups = 18 netf = 0

npe = 3 nps = 469

ncfn = 0 ncfl = 0

Begin backward integration... done.

Final Statistics..

lenrw = 150999 leniw = 236

1lrw = 78786 1liw = 126

nst = 119

nfe = 135 nfel = 278

nni = 132 nli = 278

nsetups = 16 netf = 0

npe = 3 nps = 402

27

ncfn

ncfl

28

4 Parallel tests

The most preeminent advantage of CVODES over existing sensitivity solvers is the possibility of
solving very large-scale problems on massively parallel computers. To illustrate this point we
present speedup results for the integration and forward sensitivity analysis for an ODE system
generated from the following 2-species diurnal kinetics advection-diffusion PDE system in 2
space dimensions. This work was reported in [3]. The PDE is a modification of that described
in [4], and takes the form:

dCi K dZCi dCi dQCi

A A N ")
at g TV TR

Ri(C]_,CQ,t), fori:1,2,

where

Ri(c1,c2,t) = —qicics — qacica + 2q3(t)c3 + qa(t)ca,

Ry(c1,c2,t) = qieics — qacica — qa(t)ca,

K, Ky, v, q1, g2, and c3 are constants, and ¢3(t) and g4(¢) vary diurnally. The problem
is posed on the square 0 < x < 20, 30 < z < 50 (all in km), with homogeneous Neumann
boundary conditions, and for time t in 0 < ¢ < 86400 (1 day). The PDE system is treated by
central differences on a uniform mesh, except for the advection term, which is treated with a
biased 3-point difference formula. The initial profiles are proportional to a simple polynomial
in x and a hyperbolic tangent function in z.

The solution with ¢vODES is done with the BDF/GMRES method (i.e. using the SUNLIN-
SOL_SPGMR linear solver module) and the block-diagonal part of the Newton matrix as a left
preconditioner. A copy of the block-diagonal part of the Jacobian is saved and conditionally
reused within the preconditioner setup function.

The problem is solved by CVODES using P processes, treated as a rectangular process
grid of size p, X p,. Each process is assigned a subgrid of size n = n, x n, of the (z,z)
mesh. Thus the actual mesh size is N, X N, = (pzny) X (p.n.), and the ODE system size is
N = 2N,N,. Parallel performance tests were performed on ASCI Frost, a 68-node, 16-way
SMP system with POWERS 375 MHz processors and 16 GB of memory per node. We present
timing results for the integration of only the state equations (column STATES), as well as
for the computation of forward sensitivities with respect to the diffusion coefficients K} and
K, using the staggered corrector method without and with error control on the sensitivity
variables (columns STG and STG_FULL, respectively). Run times for a global problem size
of N =2N,N, = 2-1600 - 400 = 1, 280,000 are shown in Fig. 8 and listed below.

P STATES STG STG.FULL
4 460.31 1414.53 2208.14
8 211.20 646.59 1064.94
16 97.16 320.78 417.95
32 42.78 137.51 210.84

64 19.50 63.34 83.24
128 13.78 42.71 55.17
256 9.87 31.33 47.95

We note that there was not enough memory to solve the problem (even without carrying
sensitivities) using fewer processes.

29

4096

\ —— STATES]
. - STG

R, - STG_FULL | |

12

2048

512t Yo 1
256

128

CPU time (s)

D
g

32

16

84 8 16 32 64 128 256
Number of processors

Figure 8: Speedup results for the integration of the state equations only (solid line), stag-
gered sensitivity analysis without error control on the sensitivity variables (dashed line), and
staggered sensitivity analysis with full error control (dotted line)

The departure from the ideal line of slope —1 is explained by the interplay of several con-
flicting processes. On one hand, when increasing the number of processes, the preconditioner
quality decreases, as it incorporates a smaller and smaller fraction of the Jacobian, and the
cost of interprocess communication increases. On the other hand, decreasing the number of
processes leads to an increase in the cost of the preconditioner setup phase and to a larger
local problem size which can lead to a point where a node starts memory-paging to disk.

30

References

[1] A. C. Hindmarsh and R. Serban. User Documentation for CVODES v6.1.1. Technical
report, LLNL, 2022. UCRL-SM-208111.

[2] A.C. Hindmarsh, R. Serban, and D. R. Reynolds. Example Programs for CVODE v6.1.1.
Technical report, LLNL, 2022. UCRL-SM-208110.

[3] R. Serban and A. C. Hindmarsh. CVODES, the sensitivity-enabled ODE solver in
SUNDIALS. In Proceedings of the 5th International Conference on Multibody Systems,
Nonlinear Dynamics and Control, Long Beach, CA, 2005. ASME.

[4] M. R. Wittman. Testing of PVODE, a Parallel ODE Solver. Technical Report UCRL-
ID-125562, LLNL, August 1996.

31

	Introduction
	Forward sensitivity analysis example problems
	Adjoint sensitivity analysis example problems
	Parallel tests
	References

