Example Programs for KINSOL v6.1.1

Aaron M. Collier and Radu Serban
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

February 11, 2022

aials

<
S

(Vo)

UCRL-SM-208114

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United
States government. Neither the United States government nor Lawrence Livermore National
Security, LLC, nor any of their employees makes any warranty, expressed or implied, or as-
sumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product, pro-
cess, or service by trade name, trademark, manufacturer, or otherwise does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States gov-
ernment or Lawrence Livermore National Security, LLC. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LL.C, and shall not be used for advertising or product
endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-0TNA27344.

Approved for public release; further dissemination unlimited

CONTRIBUTORS

The SUNDIALS library has been developed over many years by a number of contributors.
The current SUNDIALS team consists of Cody J. Balos, David J. Gardner, Alan C. Hind-
marsh, Daniel R. Reynolds, and Carol S. Woodward. We thank Radu Serban for significant
and critical past contributions.

Other contributors to SUNDIALS include: James Almgren-Bell, Lawrence E. Banks, Pe-
ter N. Brown, George Byrne, Rujeko Chinomona, Scott D. Cohen, Aaron Collier, Keith E.
Grant, Steven L. Lee, Shelby L. Lockhart, John Loffeld, Daniel McGreer, Slaven Peles, Cos-
min Petra, H. Hunter Schwartz, Jean M. Sexton, Dan Shumaker, Steve G. Smith, Allan G.
Taylor, Hilari C. Tiedeman, Chris White, Ting Yan, and Ulrike M. Yang.

Contents

1 Introduction

2 C example problems

3 Fortran example problems
4 C+H+ example problems
References

12

15

19

1 Introduction

This report is intended to serve as a companion document to the User Documentation of
KINSOL [1]. It provides details, with listings, on the example programs supplied with the
KINSOL distribution package.

The KINSOL distribution contains examples of types: serial C examples, parallel C exam-
ples, serial and parallel FORTRAN examples, and an OpenMP example. With the exception
of ”demo”-type example files, the names of all the examples distributed with SUNDIALS are
of the form [slv] [PbName] _[strat]_[1s]_[prec]_[pl, where

[slv] identifies the solver (for KINSOL examples this is kin, while for FKINSOL examples, this
is fkin);

[PbName]| identifies the problem;
[strat] identifies the strategy (absent if “none” or “linesearch”);
[Is] identifies the linear solver module used;

[prec] indicates the KINSOL preconditioner module used (only if applicable, for examples
using a Krylov linear solver and the KINBBDPRE module, this will be bbd);

[p] indicates an example using the parallel vector module NVECTOR_PARALLEL.

The following lists summarize all examples distributed with KINSOL.

Supplied in the sredir/examples/kinsol/serial directory are the following serial examples
(using the NVECTOR_SERIAL module):

e kinRoberts_fp solves the backward Euler time step for a three-species chemical kinetics
system, using the fixed point strategy.

e kinFerTron_dns solves the Ferraris-Tronconi problem.
This program solves the problem with the SUNLINSOL_DENSE linear solver and uses
different combinations of globalization and Jacobian update strategies with different
initial guesses.

e kinFerTron_klu solves the same problem as in kinFerTron_dns, but uses the sparse
direct solver KLU via the SUNLINSOL_KLU module.

e kinRoboKin_dns solves a nonlinear system from robot kinematics.
This program solves the problem with the SUNLINSOL_DENSE linear solver and a user-
supplied Jacobian routine.

e kinRoboKin_slu is the same as kinRoboKin_dns but uses the SuperLUMT sparse direct
linear solver via the SUNLINSOL_SUPERLUMT module.

e kinlaplace_bnd solves a simple 2-D elliptic PDE on a unit square.
This program solves the problem with the SUNLINSOL_BAND linear solver.

e kinlLaplace_picard_bnd is the same as kinLaplace_bnd but uses the Picard strategy.

e kinFoodWeb_kry solves a food web model.
This is a nonlinear system that arises from a system of partial differential equations
describing a six-species food web population model, with predator-prey interaction
and diffusion on the unit square in two dimensions. This program solves the problem
with the SUNLINSOL_SPGMR linear solver module and a user-supplied preconditioner.
The preconditioner is a block-diagonal matrix based on the partial derivatives of the
interaction terms only.

e kinKrylovDemo_ls solves the same problem as kinFoodWeb_kry, but with three Krylov
linear solvers: SUNLINSOL_SPGMR, SUNLINSOL_SPBCGS, and SUNLINSOL_SPTFQMR.

Supplied in the srcdir/examples/kinsol/parallel directory are the following parallel ex-
amples (using the NVECTOR_PARALLEL module):

e kinFoodWeb_kry_p is a parallel implementation of kinFoodWeb_kry.

e kinFoodWeb_kry_bbd_p solves the same problem as kinFoodWeb_kry_p, with a block-
diagonal matrix with banded blocks as a preconditioner, generated by difference quo-
tients, using the KINBBDPRE module.

As part of the FKINSOL module, in the directories srcdir/examples/kinsol/fcmix serial
and srcdir/examples/kinsol/fcmix _parallel, respectively, are the following examples for
the FORTRAN-C interface:

2=

P =

e fkinDiagon kry is a serial example, which solves a nonlinear system of the form 2

using an approximate diagonal preconditioner.

e fkinDiagon kry_p is a parallel implementation of fkinDiagon kry.

Supplied in directory srcdir/examples/kinsol/C_openmp is an example using the OpenMP
NVECTOR module. kin FoodWeb _kry_omp solves the same problem as kin _FoodWeb_kry but
uses the OpenMP module.

Supplied in directory srcdir/examples/kinsol/CXX_parallel is an example using the NVEC-
TOR_PARALLEL module. kin heat2D nonlin p solves a steady-state 2D heat equation with
an additional nonlinear term. This problem is solved via fixed point iteration with Anderson
acceleration. This example highlights the availability of various orthogonalization methods
for use within Anderson acceleration.

Supplied in directory srcdir/examples/kinsol/CXX_parhyp are examples using the NVEC-
TOR_PARALLEL module and incorporating use of hypre preconditioners and solvers. These
example problems are solved via fixed point iteration with Anderson acceleration. They
highlight the availability of various orthogonalization methods for use within Anderson ac-
celeration.

e kin heat2D nonlin hypre_pfmg solves the same problem as kin_heat2D nonlin_p but
with a different fixed point iteration setup requiring a linear solve that uses hypre’s
PFMG preconditioner.

e kin bratu2D_hypre_pfmg solves a 2D Bratu equation [3] requiring a linear solve that
uses hypre’s PFMG preconditioner.

In the following sections, we give detailed descriptions of some (but not all) of these examples.
We also give our output files for each of these examples, but users should be cautioned that
their results may differ slightly from these. Differences in solution values may differ within
the tolerances, and differences in cumulative counters, such as numbers of Newton iterations,
may differ from one machine environment to another by as much as 10% to 20%.

In the descriptions below, we make frequent references to the KINSOL User Document [1].
All citations to specific sections (e.g. §4.2) are references to parts of that User Document,
unless explicitly stated otherwise.

Note. The examples in the KINSOL distribution are written in such a way as to compile and
run for any combination of configuration options used during the installation of SUNDIALS (see
Appendix A in the User Guide). As a consequence, they contain portions of code that will
not be typically present in a user program. For example, all C example programs make use of
the variables SUNDIALS_EXTENDED_PRECISION and SUNDIALS_DOUBLE_PRECISION to test if the
solver libraries were built in extended or double precision, and use the appropriate conversion
specifiers in printf functions.

2 C example problems

2.1 A serial dense example: kinFerTron_dns

As an initial illustration of the use of the KINSOL package for the solution of nonlinear

systems, we give a sample program called kinFerTron dns.c. It uses the KINSOL dense

linear solver module SUNLINSOL_DENSE and the NVECTOR_SERIAL module (which provides a

serial implementation of NVECTOR) for the solution of the Ferraris-Tronconi test problem [2].
This problem involves a blend of trigonometric and exponential terms:

0 = 0.5sin(x22) — 0.25x9 /7 — 0.521

0=(1—-0.25/m)(e* —e)+ exs/m — 2exy

subject to (1)
ZTimin = 0.25 <21 <1 = &1 max

L2min = 1.5 <2 < 2m = L2 max -

The bounds constraints on x1 and x2 are treated by introducing four additional variables
and using KINSOL’s optional constraints feature to enforce non-positivity and non-negativity:

l1 =21 — T1min > 0
Ly =2 — Timax <0
lo =29 —2omin >0

Ly =22 — Tomax < 0.

The Ferraris-Tronconi problem has two known solutions. We solve it with KINSOL using
two sets of initial guesses for x1 and zo (first their lower bounds and secondly the middle of
their feasible regions), both with an exact and modified Newton method, with and without
line search.

Following the initial comment block, this program has a number of #include lines, which
allow access to useful items in CVODE header files. The kinsol.h file provides prototypes
for the KINSOL functions to be called (excluding the linear solver selection function), and
also a number of constants that are to be used in setting input arguments and testing the
return value of KINSol. The nvector_serial.h file is the header file for the serial imple-
mentation of the NVECTOR module and includes definitions of the N_Vector type, a macro
to access vector components, and prototypes for the serial implementation specific machine
environment memory allocation and freeing functions. The sunmatrix dense.h file provides
the prototype for the SUNDenseMatrix function. The sunlinsol_dense.h file provides the
prototype for the SUNLinSol Dense function. The sundials_types.h file provides the defi-
nition of the type realtype (see §4.2 for details). For now, it suffices to read realtype as
double. Finally, sundials math.h is included for the definition of the exponential function
RExp.

Next, the program defines some problem-specific constants, which are isolated to this early
location to make it easy to change them as needed. This program includes a user-defined
accessor macro, Ith, that is useful in writing the problem functions in a form closely matching
the mathematical description of the system, i.e. with components numbered from 1 instead
of from 0. The Ith macro is used to access components of a vector of type N_Vector with
a serial implementation. It is defined using the NVECTOR_SERIAL accessor macro NV_Ith_S
which numbers components starting with 0. The program prologue ends with prototypes of
the user-supplied system function func and several private helper functions.

The main program begins with some dimensions and type declarations, including use of
the type N_Vector, initializations, and allocation and definitions for the user data structure
data which contains two arrays with lower and upper bounds for 1 and z2. Next, we create
five serial vectors of type N_Vector for the two different initial guesses, the solution vector u,
the scaling factors, and the constraint specifications.

The initial guess vectors ul and u2 are set by the private functions SetInitialGuess1 and
SetInitialGuess2 and the constraint vector c is initialized to [0,0,1,—1,1, —1] indicating
that there are no additional constraints on the first two components of u (i.e. x; and z2)
and that the 3rd and 5th compnents should be non-negative, while the 4th and 6th should
be non-positive.

The calls to N_VNew_Serial, and also later calls to various KIN*#** functions, make use
of a private function, check_flag, which examines the return value and prints a message if
there was a failure. The check_flag function was written to be used for any serial SUNDIALS
application.

The call to KINCreate creates the KINSOL solver memory block. Its return value is a
pointer to that memory block for this problem. In the case of failure, the return value is
NULL. This pointer must be passed in the remaining calls to KINSOL functions.

The next four calls to KINSOL optional input functions specify the pointer to the user data
structure (to be passed to all subsequent calls to func), the vector of additional constraints,
and the function and scaled step tolerances, fnormtol and scsteptol, respectively.

Solver memory is allocated through the call to KINInit which specifies the system func-
tion func and provides the vector u which will be used internally as a template for cloning
additional necessary vectors of the same type as u. The use of the dense linear solver is spec-
ified by calling SUNDenseMatrix to create the template Jacobian matrix (which also specifies
the problem size NEQ), then calling SUNLinSol Dense to create the dense-direct linear solver,
and finally calling KINSetLinearSolver to attach these to KINSOL.

The main program proceeds by solving the nonlinear system eight times, using each of the
two initial guesses ul and u2 (which are first copied into the vector u using N_VScale_Serial
from the NVECTOR_SERIAL module), with and without globalization through line search (spec-
ified by setting glstr to KIN.LINESEARCH and KIN_NONE, respectively), and applying either
an exact or a modified Newton method. The switch from exact to modified Newton is done
by changing the number of nonlinear iterations after which a Jacobian evaluation is enforced,
a value mset= 1 thus resulting in re-evaluating the Jacobian at every single iteration of the
nonlinear solver (exact Newton method). Note that passing mset= 0 indicates using the
default KINSOL value of 10.

The actual problem solution is carried out in the private function SolveIt which calls
the main solver function KINSol after first setting the optional input mset. After a successful
return from KINSol, the solution [z, x3] and some solver statistics are printed.

The function func is a straightforward expression of the extended nonlinear system. It
uses the macro NV_DATA_S (defined by the NVECTOR_SERIAL module) to extract the pointers
to the data arrays of the N_Vectors u and f and sets the components of fdata using the
current values for the components of udata. See §4.6.1 for a detailed specification of f.

The output generated by kinFerTron_dns is shown below.

kinFerTron_dns sample output

Ferraris and Tronconi test problem
Tolerance parameters:

fnormtol = le-05
scsteptol = le-05

Initial guess on lower bounds
[x1,x2] = 0.25 1.5

Exact Newton
Solution:

[x1,x2] = 0.299449 2.83693
Final Statistics:

nni = 3 nfe = 4

nje = 3 nfeD = 18

Exact Newton with line search
Solution:

[x1,x2] = 0.299449 2.83693
Final Statistics:

nni = 3 nfe = 4

nje = 3 nfeD = 18

Modified Newton

Solution:
[x1,x2] = 0.299449 2.83693
Final Statistics:
nni = 11 nfe = 12
nje = 2 nfeD = 12

Modified Newton with line search
Solution:

[x1,x2] = 0.299449 2.83693
Final Statistics:

nni = 11 nfe = 12

nje = 2 nfeD = 12

Initial guess in middle of feasible
[x1,x2] = 0.625 3.89159

Exact Newton
Solution:

[x1,x2] = 0.5 3.14159
Final Statistics:

nni = 5 nfe = 6

nje = 5 nfeD = 30

Exact Newton with line search
Solution:

[x1,x2] = 0.5 3.14159
Final Statistics:

nni = 5 nfe = 6

nje = 5 nfeD = 30

Modified Newton
Solution:

[x1,x2] = 0.500003 3.1416
Final Statistics:

region

nni = 12 nfe 13
2 nfeD = 12

nje

Modified Newton with line search

Solution:
[x1,x2] = 0.500003 3.1416
Final Statistics:
nni = 12 nfe = 13
nje = 2 nfeD = 12

2.2 A serial Krylov example: kinFoodWeb kry

We give here an example that illustrates the use of KINSOL with the Krylov method SPGMR,
via the SUNLINSOL_SPGMR module, as the linear system solver.

This program solves a nonlinear system that arises from a discretized system of partial
differential equations. The PDE system is a six-species food web population model, with
predator-prey interaction and diffusion on the unit square in two dimensions. Given the
dependent variable vector of species concentrations ¢ = [c1,¢2, ..., ¢p, |1, Where ng = 2n,, is
the number of species and n,, is the number of predators and of prey, then the PDEs can be
written as

0%c; 0% :
(2 <(9:62+3y2> +fl(x7yac)_0 (IL_]'""’nS)’ (2)

where the subscripts ¢ are used to distinguish the species, and where

filmy,o)=ci- [b+ aijci| . (3)
i=1

The problem coefficients are given by

—1 i=j
) -05-107% i< n,, j>mn,
M= 104 1>np, J<ny
0 all other

1+ azy 1<y

—1l—-axy i>n,,

0 {1 i<y
0.5 i>mn,.
The spatial domain is the unit square (z,y) € [0, 1] x [0, 1].

Homogeneous Neumann boundary conditions are imposed and the initial guess is constant
in both z and y. For this example, the equations (2) are discretized spatially with standard
central finite differences on a 8 x 8 mesh with ny, = 6, giving a system of size 384.

Among the initial #include lines in this case are lines to include sunlinsol_spgmr.h
and sundials_math.h. The first contains constants and function prototypes associated with
the SPGMR solver module. The inclusion of sundials math.h is done to access the SUNMAX

and

and SUNRabs macros, and the SUNRsqrt function to compute the square root of a realtype
number.

The main program calls KINCreate and then calls KINInit with the name of the user-
supplied system function func and solution vector as arguments. The main program then
calls a number of KINSet* routines to notify KINSOL of the user data pointer, the posi-
tivity constraints on the solution, and convergence tolerances on the system function and
step size. It calls SUNLinSol SPGMR (see §4.5.2) to create the SPGMR linear solver module,
supplying the max1l value of 15 as the maximum Krylov subspace dimension. It then calls
KINSetLinearSolver to attach this solver module to KINSOL. Next, a maximum value of
maxlrst = 2 restarts is imposed through a call to SUNLinSol _SPGMRSetMaxRestarts. Finally,
the user-supplied preconditioner setup and solve functions, PrecSetupBD and PrecSolveBD,
are specified through a call to KINSetPreconditioner (see §4.5.4). The data pointer passed
to KINSetUserData is passed to PrecSetupBD and PrecSolveBD whenever these are called.

Next, KINSol is called, the return value is tested for error conditions, and the approxi-
mate solution vector is printed via a call to PrintOutput. After that, PrintFinalStats is
called to get and print final statistics, and memory is freed by calls to N_VDestroy_Serial,
FreeUserData and KINFree. The statistics printed are the total numbers of nonlinear itera-
tions (nni), of func evaluations (excluding those for Jv product evaluations) (nfe), of func
evaluations for Jv evaluations (nfeSG), of linear (Krylov) iterations (nli), of preconditioner
evaluations (npe), and of preconditioner solves (nps). All of these optional outputs and others
are described in §4.5.5.

Mathematically, the dependent variable has three dimensions: species number, z mesh
point, and y mesh point. But in NVECTOR_SERIAL, a vector of type N_Vector works with
a one-dimensional contiguous array of data components. The macro IJ Vptr isolates the
translation from three dimensions to one. Its use results in clearer code and makes it easy
to change the underlying layout of the three-dimensional data. Here the problem size is 384,
so we use the NV_DATA_S macro for efficient N_Vector access. The NV_DATA_S macro gives
a pointer to the first component of a serial N_Vector which is then passed to the IJ Vptr
macro.

The preconditioner used here is the block-diagonal part of the true Newton matrix and is
based only on the partial derivatives of the interaction terms f in (3) and hence its diagonal
blocks are ns x ns matrices (ns = 6). It is generated and factored in the PrecSetupBD
routine and backsolved in the PrecSolveBD routine. See §4.6.7 for detailed descriptions of
these preconditioner functions.

The program kinFoodWeb_kry.c uses the “small” dense functions for all operations on
the 6 x 6 preconditioner blocks. Thus it includes sundials_dense.h, and calls the small dense
matrix functions newDenseMat, denseGETRF, and denseGETRS. The small dense functions are
generally available for KINSOL user programs (for more information, see the comments in the
header file sundials_dense.h).

In addition to the functions called by KINSOL, kinFoodWeb_kry.c includes definitions
of several private functions. These are: AllocUserData to allocate space for the precondi-
tioner and the pivot arrays; InitUserData to load problem constants in the data block;
FreeUserData to free that block; SetInitialProfiles to load the initial values in cc;
PrintHeader to print the heading for the output; PrintOutput to retreive and print se-
lected solution values; PrintFinalStats to print statistics; and check_flag to check return
values for error conditions.

The output generated by kinFoodWeb_kry is shown below. Note that the solution involved
10 Newton iterations, with an average of about 38 Krylov iterations per Newton iteration.

kinFoodWeb_kry sample output

Predator -prey test problem -- KINSol (serial version)
Mesh dimensions = 8 X 8

Number of species = 6

Total system size = 384

Flag globalstrategy = 0 (0 = None, 1 = Linesearch)

Linear solver is SPGMR with maxl = 15, maxlrst = 2
Preconditioning uses interaction-only block-diagonal matrix
Positivity constraints imposed on all components

Tolerance parameters: fnormtol = 1e-07 scsteptol = le-13

Initial profile of concentration
At all mesh points: 1 1 1 30000 30000 30000
Computed equilibrium species concentrations:

At bottom left:
1.16428 1.16428 1.16428 34927.5 34927.5 34927.5

At top right:
1.25797 1.25797 1.25797 37736.7 37736.7 37736.7

Final Statistics..

nni = 9 nli = 329
nfe = 10 nfeSG = 338
nps = 338 npe = 1 ncfl = 6

2.3 A parallel example: kinFoodWeb _kry_bbd_p

In this example, kinFoodWeb_kry_bbd_p, we solve the same problem as with kinFoodWeb_kry
above, but in parallel, and instead of supplying the preconditioner we use the KINBBDPRE
module.

In this case, we think of the parallel MPI processes as being laid out in a rectangle, and
each process being assigned a subgrid of size MXSUBxMYSUB of the x —y grid. If there are NPEX
processes in the x direction and NPEY processes in the y direction, then the overall grid size
is MXxXMY with MX=NPEX xMXSUB and MY=NPEYxMYSUB, and the size of the nonlinear system
is NUM_SPECIES-MX-MY.

The evaluation of the nonlinear system function is performed in func. In this parallel
setting, the processes first communicate the subgrid boundary data and then compute the
local components of the nonlinear system function. The MPI communication is isolated in
the private function ccomm (which in turn calls BRecvPost, BSend, and BRecvWait) and the
subgrid boundary data received from neighboring processes is loaded into the work array
cext. The computation of the nonlinear system function is done in func_local which starts
by copying the local segment of the cc vector into cext, and then by imposing the boundary
conditions by copying the first interior mesh line from cc into cext. After this, the nonlinear
system function is evaluated by using central finite-difference approximations using the data
in cext exclusively.

KINBBDPRE uses a band-block-diagonal preconditioner, generated by difference quotients.

The upper and lower half-bandwidths of the Jacobian block generated on each process are
both equal to 2 - ng — 1, and that is the value passed as mudq and mldq in the call to
KINBBDPrecInit. These values are much less than the true half-bandwidths of the Jacobian
blocks, which are n,- MXSUB. However, an even narrower band matrix is retained as the precon-
ditioner, with half-bandwidths equal to ng, and this is the value passed to KINBBDPrecInit
for mukeep and mlkeep.

The function func_local is also passed as the gloc argument to KINBBDPrecInit. Since
all communication needed for the evaluation of the local aproximation of f used in building
the band-block-diagonal preconditioner is already done for the evaluation of f in func, a
NULL pointer is passed as the gcomm argument to KINBBDPrecInit.

The main program resembles closely that of the kinFoodWeb_kry example, with particu-
larization arising from the use of the parallel MPI NVECTOR_PARALLEL module. It begins by
initializing MPI and obtaining the total number of processes and the rank of the local pro-
cess. The local length of the solution vector is then computed as NUM_SPECIES-MXSUB-MYSUB.
Distributed vectors are created by calling the constructor defined in NVECTOR_PARALLEL
with the MPI communicator and the local and global problem sizes as arguments. All out-
put is performed only from the process with id equal to 0. Finally, after KINSol is called and
the results are printed, all memory is deallocated, and the MPI environment is terminated
by calling MPI _Finalize.

The output generated by kinFoodWeb kry_bbd p is shown below. Note that 9 Newton
iterations were required, with an average of about 51.6 Krylov iterations per Newton iteration.

kinFoodWeb_kry_bbd_p sample output

{

Predator-prey test problem-- KINSol (parallel-BBD version)

Mesh dimensions = 20 X 20
Number of species = 6
Total system size = 2400

Subgrid dimensions = 10 X 10
Processor array is 2 X 2

Flag globalstrategy = 0 (0 = None, 1 = Linesearch)

Linear solver is SPGMR with maxl = 20, maxlrst = 2
Preconditioning uses band-block-diagonal matrix from KINBBDPRE
Difference quotient half-bandwidths: mudq = 11, mldq = 11
Retained band block half-bandwidths: mukeep = 6, mlkeep = 6

Tolerance parameters: fnormtol = 1e-07 scsteptol = 1le-13

Initial profile of concentration
At all mesh points: 1 1 1 30000 30000 30000
Computed equilibrium species concentrations:

At bottom left:
1.165 1.165 1.165 34949 34949 34949

At top right:
1.255652 1.255652 1.25552 37663.2 37663.2 37663.2

Final Statistics..
nni = 9 nli = 464

10

nfe = 10 nfeSG 473
nps 473 npe = 1 ncfl

11

3 Fortran example problems

The FORTRAN example problem programs supplied with the KINSOL package are all written
in standard F77 Fortran and use double precision arithmetic. Before running any of these
examples, the user should make sure that the FORTRAN data types for real and integer
variables appropriately match the C types. See §5.3 in the KINSOL User Document for
details.

However, when the FORTRAN examples are built, the source code is automatically mod-
ified according to the configure options supplied by the user and the system type. Integer
variables are declared as INTEGER*n, where n denotes the number of bytes in the correspond-
ing C type (long int or int). Floating-point variable declarations remain unchanged if
double precision is used, but are changed to REAL*n, where n denotes the number of bytes
in the SUNDIALS type realtype, if using single precision. Also, if using single precision,
declarations of floating-point constants are appropriately modified, e.g. 0.5D-4 is changed
to 0.5E-4.

The two examples supplied with the FKINSOL module are very simple tests of the FORTRAN-
C interface module. They solve the nonlinear system

F(u) =0, where fi(u) =uf—4,1<i<N.

3.1 A serial example: fkinDiagon kry

The fkinDiagon_kry program solves the above problem using the NVECTOR_SERIAL module.

The main program begins by calling fnvinits to initialize computations with the NVEC-
TOR_SERIAL module. Next, the array uu is set to contain the initial guess u; = 2¢, the array
scale is set with all components equal to 1.0 (meaning that no scaling is done), and the ar-
ray constr is set with all components equal to 0.0 to indicate that no inequality constraints
should be imposed on the solution vector.

The KINSOL solver is initialized and memory for it is allocated by calling fkinmalloc,
which also specifies the iout and rout arrays which are used to store integer and real outputs,
respectively (see Table 5.4). Also, various integer, real, and vector parameters are specified
by calling the fkinsetiin, fkinsetrin, and fkinsetvin subroutines, respectively. In par-
ticular, the maximum number of iterations between calls to the preconditioner setup routine
(msbpre = 5), the tolerance for stopping based on the function norm (fnormtol = 1079),
and the tolerance for stopping based on the step length (scsteptol = 10~%) are specified.

Next, the SUNLINSOL_SPGMR linear solver module is attached to KINSOL by calling
fsunspgmrinit, which also specifies the maximum Krylov subspace dimension (maxl = 10).
This is then attached to KINSOL by calling fkinlsinit. The maximum number of restarts
allowed for SPGMR is then updated to maxlrst = 2 by calling fsunspgmrsetmaxrs. The
SUNLINSOL_SPGMR module is then directed to use the supplied preconditioner by calling the
fkinlssetprec routine with a first argument equal to 1. The solution of the nonlinear system
is obtained after a successful return from fkinsol, which is then printed to unit 6 (stdout).
Finally, memory allocated for the KINSOL solver is released by calling fkinfree.

The user-supplied routine fkfun contains a straightforward transcription of the nonlinear
system function f, while the routine fkpset sets the array pp (in the common block pcom)
to contain an approximation to the reciprocals of the Jacobian diagonal elements. The
components of pp are then used in fkpsol to solve the preconditioner linear system Pz = v
through simple multiplications.

The following is sample output from fkinDiagon kry, using N = 128.

12

fkinDiagon_kry sample output

Example program fkinDiagon_kry:

This FKINSOL example solves a 128 eqn diagonal algebraic system.
Its purpose is to demonstrate the use of the Fortran interface
in a serial environment.

globalstrategy = KIN_NONE

FKINSOL return code is 0

The resultant values of uu are:

1 1.000000 2.000000 3.000000 4.000000

5 5.000000 6.000000 7.000000 8.000000

9 9.000000 10.000000 11.000000 12.000000
13 13.000000 14.000000 15.000000 16.000000
17 17.000000 18.000000 19.000000 20.000000
21 21.000000 22.000000 23.000000 24.000000
25 25.000000 26.000000 27.000000 28.000000
29 29.000000 30.000000 31.000000 32.000000
33 33.000000 34.000000 35.000000 36.000000
37 37.000000 38.000000 39.000000 40.000000
41 41.000000 42.000000 43.000000 44.000000
45 45.000000 46.000000 47.000000 48.000000
49 49.000000 50.000000 51.000000 52.000000
53 53.000000 54.000000 55.000000 56.000000
57 57.000000 58.000000 59.000000 60.000000
61 61.000000 62.000000 63.000000 64.000000
65 65.000000 66.000000 67.000000 68.000000
69 69.000000 70.000000 71.000000 72.000000
73 T73.000000 74.000000 75.000000 76.000000
77 77.000000 78.000000 79.000000 80.000000
81 81.000000 82.000000 83.000000 84.000000
85 85.000000 86.000000 87.000000 88.000000
89 89.000000 90.000000 91.000000 92.000000
93 93.000000 94.000000 95.000000 96.000000
97 97.000000 98.000000 99.000000 100.000000
101 101.000000 102.000000 103.000000 104.000000
105 105.000000 106.000000 107.000000 108.000000
109 109.000000 110.000000 111.000000 112.000000
113 113.000000 114.000000 115.000000 116.000000
117 117.000000 118.000000 119.000000 120.000000
121 121.000000 122.000000 123.000000 124.000000
125 125.000000 126.000000 127.000000 128.000000

Final statistics:

nni = 7, nli = 21
nfe = 8, mnpe = 2
nps = 28, ncfl = 0

13

3.2 A parallel example: fkinDiagon kry p

The program fkinDiagon kry_p is a straightforward modification of fkinDiagon kry to use
the MPI-enabled NVECTOR_PARALLEL module.

After initialization of MPI, the NVECTOR_PARALLEL module is initialized by calling
fnvinitp with the default MPI communicator mpi_comm world and the local and global
vector sizes as its first three arguments. The rank of the local process, mype, is used in both
the initial guess and the system function, inasmuch as the global and local indices to the vec-
tor u are related by the equation iglobal = ilocal + mype*nlocal. In other respects, the
problem setup (KINSOL initialization, SUNLINSOL_SPGMR specification) and solution steps are
the same as in fkinDiagon_kry. Upon successful return from fkinsol, the solution segment
local to the process with id equal to 0 is printed to unit 6. Finally, the KINSOL memory is
released and the MPI environent is terminated.

For this simple example, no inter-process communication is required to evaluate the non-
linear system function f or the preconditioner. As a consequence, the user-supplied routines
fkfun, fkpset, and fkpsol are basically identical to those in fkinDiagon kry.

Sample output from fkinDiagon kry_p, for N = 128, follows.

fkinDiagon kry p sample output

Example program fkinDiagon_kry_p:

This FKINSOL example solves a 128 eqn diagonal algebraic system.
Its purpose is to demonstrate the use of the Fortran interface
in a parallel environment.

FKINSOL return code is 0
The resultant values of uu (process 0) are:

1 1.000000 2.000000 3.000000 4.000000
5 5.000000 6.000000 7.000000 8.000000
9 9.000000 10.000000 11.000000 12.000000
13 13.000000 14.000000 15.000000 16.000000
17 17.000000 18.000000 19.000000 20.000000
21 21.000000 22.000000 23.000000 24.000000
25 25.000000 26.000000 27.000000 28.000000
29 29.000000 30.000000 31.000000 32.000000

Final statistics:

nni = 7, mnli = 21
nfe = 8, mnpe = 2
nps = 28, ncfl = 0

14

4 C++ example problems

4.1 A parallel matrix-free example: kin_heat2D _nonlin_p

As an illustration of the use of the KINSOL package for the solution of nonlinear systems in par-
allel, we give a sample program called kin heat2D nonlin p.cpp. It uses the KINSOL KINFP
iteration with Anderson Acceleration and the NVECTOR_PARALLEL module (which provides
a parallel implementation of NVECTOR) for the solution of the following test problem. This
example highlights the use of the various orthogonalization routine options within Anderson
Acceleration, passed to the example problem via the -—orthaa flag. Available options include
0 (KIN_ORTH.MGS), 1 (KIN_ORTH_ICWY), 2 (KIN_ORTH_CGS2), and 3 (KIN_ORTH_DCGS2).

This problem involves solving a steady-state 2D heat equation with an additional nonlin-
ear term defined by c(u):

b=V -(DVu)+c(u) in D=][0,1] x [0,1] (4)

where D is a diagonal matrix with entries k, and k,, for the diffusivity in the 2 and y directions
respectively. The boundary conditions are

u(0,y) = u(l,y) = u(z,0) = u(z,1) = 0. (5)
We chose the analytical solution to be
Uexact = u(z,y) = sin?(7z) sin®(7y), (6)
hence, we define the static term b as follows

- 2(cos®(rx) — sin®(mz)) sin® (7
b =k, 272 (cos® (mx) () sin”(my) (7)

+ k212 (cos?(my) — sin?(my)) sin? (72) + ¢(Uexact)

The spatial derivatives are computed using second-order centered differences, with the
data distributed over n, x n, points on a uniform spatial grid. The problem is set up to use
spatial grid parameters n, = 64 and n, = 64, with heat conductivity parameters k, = 1.0
and k, = 1.0.

This problem is solved via a fixed point iteration with Anderson acceleration, where the
fixed point is function formed by adding u to both sides of the equation i.e.,

b+u=V-(DVu)+ c(u) + u, (8)

so that the fixed point function is
G(u) =V - (DVu) + c(u) +u —b. (9)
The problem is run using a tolerance of 1078, and a starting vector containing all ones.

The following tables contains all available input parameters when running the example prob-
lem.

15

Table 1: Optional input parameter flags.

Flag

Description

--mesh <nx> <ny>
—--np <npx> <npy>
--domain <xu> <yu>
--k <kx> <ky>
--rtol <rtol>
--maa <maa>
--damping <damping>
--orthaa <orthaa>
—-maxits <maxits>

mesh points in the x and y directions

number of MPI processes in the x and y directions
domain upper bound in the x and y direction

diffusion coefficients

relative tolerance

number of previous residuals for Anderson Acceleration
damping parameter for Anderson Acceleration
orthogonalization routine used in Anderson Acceleration
max number of iterations

--c <cu>
-—timing
--help

nonlinear function choice (integer between 1 - 17)
print timing data
print available input parameters and exit

Table 2: Input parameter flags for setting the nonlinear function c(u).

Flag Function

--c 1 c(u) =u

--c 2 c(u) =ud —u

--c 3 c(u) = u — u?

--c 4 clu) =e*

--c 5 c(u) = u?

--c 6 c(u) = cos?(u) — sin?(u)

-—c 7 c(u) = cos?(u) — sin?(u) — e*

-——¢ 8 c(u) = Uyt — qecos(u)

--c 9 c(u) = elcos*(w)

--c 10 c(u) = 10(u — u?)

--c 11 clu)=—-13+u+ (b —uwu—2)u

--c 12 c(u) = V5(u — u?)

--c 13 c(u) = (u—e*)? + (u+ usin(u) — cos(u))?
--c 14 c(u) = u+ ue* + ue™

--c 15 c(u) = u+ ue + ue " + (u — e%)?

--c 16 c(u) = u+ue® +ue ™ + (u —e*)? + (u + usin(u) — cos(u))?
--c 17 c(u) = u+ ue " + e%(u + sin(u) — cos(u))?

16

4.2 A parallel example using hypre: kin_heat2D nonlin_hypre_pfmg

As an illustration of the use of the KINSOL package for the solution of nonlinear systems in
parallel and using hypre linear solvers, we give a sample program called
kin heat2D nonlin hypre pfmg.cpp. It uses the KINSOL KINFP iteration and the NVEC-
TOR_PARALLEL module (which provides a parallel implementation of NVECTOR) for the so-
lution of the following test problem. This example highlights the use of the various orthog-
onalization routine options within Anderson Acceleration, passed to the example problem
via the --orthaa flag. Available options include 0 (KIN_.ORTH-MGS), 1 (KIN_ORTH_ICWY), 2
(KIN,ORTH,CGSQ), and 3 (KIN,ORTHDCGSQ).

This problem involves solving a steady-state 2D heat equation with an additional nonlin-
ear term defined by c(u):

b=V-(DVu)+c(u) in D=]0,1] x [0,1] (10)

where D is a diagonal matrix with entries k, and k,, for the diffusivity in the x and y directions
respectively. The boundary conditions are

u(0,y) = u(l,y) = u(z,0) = u(z,1) =0 (11)
We chose the analytical solution to be
Uexact = u(z,y) = sin?(7z) sin®(7y), (12)
hence, we define the static term b as follows

b =k, 2% (cos® (wx) — sin®(wz)) sin?(7y) (13)
+ k272 (cos?(my) — sin?(my)) sin? (7z) + ¢(Uexact)

The spatial derivatives are computed using second-order centered differences, with the
data distributed over n, x n, points on a uniform spatial grid. The problem is set up to use
spatial grid parameters n, = 64 and n, = 64, with heat conductivity parameters k, = 1.0
and k, = 1.0.

This problem is solved via a fixed point iteration with Anderson acceleration, where the
fixed point function formed by implementing the Laplacian as a matrix-vector product,

b= Au+ c(u), (14)
and solving for u results to get the fixed point function
G(u) = A7Hb — c(u)). (15)

The problem is run using a tolerance of 1078, and a starting vector containing all ones.
The linear system solve is executed using the SUNLINSOL_PCG linear solver with the hypre
PFMG preconditioner. The setup of the linear solver can be found in the Setup_LS function,
and setup of the hypre preconditioner can be found in the Setup_Hypre function within the
main file.

All input parameter flags available for Example 4.1 are also available for this problem. In
addition, all runtime flags controlling the linear solver and hypre related parameters are set
using the flags in the following table.

17

Table 3: Optional input parameter flags for setting hypre related parameters.

Flag Description

--1lsinfo output residual history for PCG
--liniters <liniters> max number of iterations for PCG
--epslin <epslin> linear tolerance for PCG

—--pfmg relax <pfmg relax> relaxation type in PFMG

--pfmg nrelax <pfmg nrelax> pre/post relaxation sweeps in PFMG

18

References

[1] A. M. Collier, A. C. Hindmarsh, R. Serban, and C.S. Woodward. User Documentation
for KINSOL v6.1.1. Technical Report UCRL-SM-208116, LLNL, 2022.

[2] C. Floudas, P. Pardalos, C. Adjiman, W. Esposito, Z. Gumus, S. Harding, J. Klepeis,
C. Meyer, and C. Schweiger. Handbook of Test Problems in Local and Global Optimization.
Kluwer Academic Publishers, Dordrecht, 1999.

[3] D. A. Frank-Kamenetskii and N. Thon. Diffusion and Heat Exchange in Chemical Kinet-
tcs. Princeton University Press, 1955.

19

	Introduction
	C example problems
	Fortran example problems
	C++ example problems
	References

