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This is the documentation for ARKode, an adaptive step time integration package for stiff, nonstiff and mixed
stiff/nonstiff systems of ordinary differential equations (ODEs) using Runge-Kutta (i.e. one-step, multi-stage) meth-
ods. The ARKode solver is a component of the SUNDIALS suite of nonlinear and differential/algebraic equation
solvers. It is designed to have a similar user experience to the CVODE solver, including user modes to allow adaptive
integration to specified output times, return after each internal step and root-finding capabilities, and for calculations
in serial, using shared-memory parallelism (via OpenMP, Pthreads, CUDA, Raja) or distributed-memory parallelism
(via MPI). The default integration and solver options should apply to most users, though control over nearly all inter-
nal parameters and time adaptivity algorithms is enabled through optional interface routines.

ARKode is written in C, with C++ and Fortran interfaces.

ARKode is developed by Southern Methodist University, with support by the US Department of Energy through the
FASTMath SciDAC Institute, under subcontract B598130 from Lawrence Livermore National Laboratory.
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Chapter 1

Introduction

The ARKode infrastructure provides adaptive-step time integration modules for stiff, nonstiff and mixed stiff/nonstiff
systems of ordinary differential equations (ODEs). ARKode itself is structured to support a wide range of one-step
(but multi-stage) methods, allowing for rapid development of parallel implementations of state-of-the-art time inte-
gration methods. At present, ARKode is packaged with two time-stepping modules, ARKStep and ERKStep.

ARKStep supports ODE systems posed in split, linearly-implicit form,

My = fE(ty)+ ' ty),  ylto) =y, (1.1)

where ¢ is the independent variable, y is the set of dependent variables (in R™V), M is a user-specified, nonsingular
operator from RV to R”, and the right-hand side function is partitioned into up to two components:

 fE(t,y) contains the “nonstiff” time scale components to be integrated explicitly, and
 fI(t,y) contains the “stiff” time scale components to be integrated implicitly.

Either of these operators may be disabled, allowing for fully explicit, fully implicit, or combination implicit-explicit
(ImEx) time integration.

The algorithms used in ARKStep are adaptive- and fixed-step additive Runge Kutta methods. Such methods are de-
fined through combining two complementary Runge-Kutta methods: one explicit (ERK) and the other diagonally
implicit (DIRK). Through appropriately partitioning the ODE right-hand side into explicit and implicit components
(1.1), such methods have the potential to enable accurate and efficient time integration of stiff, nonstiff, and mixed
stiff/nonstiff systems of ordinary differential equations. A key feature allowing for high efficiency of these methods
is that only the components in f(t, %) must be solved implicitly, allowing for splittings tuned for use with optimal
implicit solver algorithms.

This framework allows for significant freedom over the constitutive methods used for each component, and ARKode
is packaged with a wide array of built-in methods for use. These built-in Butcher tables include adaptive explicit
methods of orders 2-8, adaptive implicit methods of orders 2-5, and adaptive ImEx methods of orders 3-5.

ERKStep focuses specifically on problems posed in explicit form,

v=f(ty), y(to) = yo. (1.2)

allowing for increased computational efficiency and memory savings. The algorithms used in ERKStep are adaptive-
and fixed-step explicit Runge Kutta methods. As with ARKStep, the ERKStep module is packaged with adaptive
explicit methods of orders 2-8.
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For problems that include nonzero implicit term f£(¢,y), the resulting implicit system (assumed nonlinear, unless
specified otherwise) is solved approximately at each integration step, using a modified Newton method, inexact New-
ton method, or an accelerated fixed-point solver. For the Newton-based methods and the serial or threaded NVEC-
TOR modules in SUNDIALS, ARKode may use a variety of linear solvers provided with SUNDIALS, including
both direct (dense, band, or sparse) and preconditioned Krylov iterative (GMRES [SS7986], BiCGStab [V1992],
TFQMR [F1993], EGMRES [51993], or PCG [HS1952]) linear solvers. When used with the MPI-based parallel,
PETSc, hypre, CUDA, HIP, and Raja NVECTOR modules, or a user-provided vector data structure, only the Krylov
solvers are available, although a user may supply their own linear solver for any data structures if desired. For the
serial or threaded vector structures, we provide a banded preconditioner module called ARKBANDPRE that may
be used with the Krylov solvers, while for the MPI-based parallel vector structure there is a preconditioner module
called ARKBBDPRE which provides a band-block-diagonal preconditioner. Additionally, a user may supply more
optimal, problem-specific preconditioner routines.

1.1 Changes from previous versions

1.1.1 Changes in 4.6.1

Fixed a bug in the SUNDIALS CMake which caused an error if the CMAKE_CXX_STANDARD and SUNDI-
ALS_RAJA_BACKENDS options were not provided.

Fixed some compiler warnings when using the IBM XL compilers.

1.1.2 Changes in 4.6.0

A new NVECTOR implementation based on the AMD ROCm HIP platform has been added. This vector can target
NVIDIA or AMD GPUs. See The NVECTOR_HIP Module for more details. This module is considered experimental
and is subject to change from version to version.

The RAJA NVECTOR implementation has been updated to support the HIP backend in addition to the CUDA back-
end. Users can choose the backend when configuring SUNDIALS by using the SUNDIALS_RAJA_BACKENDS
CMake variable. This module remains experimental and is subject to change from version to version.

A new optional operation, N_VGetDeviceArrayPointer (), was added to the N_Vector API. This operation is
useful for N_Vectors that utilize dual memory spaces, e.g. the native SUNDIALS CUDA N_Vector.

The SUNMATRIX_CUSPARSE and SUNLINEARSOLVER_CUSOLVERSP_BATCHQR implemen-
tations no longer require the SUNDIALS CUDA N_ Vector. Instead, they require that the vector uti-
lized provides the N_VGetDeviceArrayPointer () operation, and that the pointer returned by
N_VGetDeviceArrayPointer () is a valid CUDA device pointer.

1.1.3 Changes in v4.5.0

Refactored the SUNDIALS build system. CMake 3.12.0 or newer is now required. Users will likely see deprecation
warnings, but otherwise the changes should be fully backwards compatible for almost all users. SUNDIALS now
exports CMake targets and installs a SUNDIALSConfig.cmake file.

Added support for SuperLU DIST 6.3.0 or newer.

1.1.4 Changes in v4.4.0

Added full support for time-dependent mass matrices in ARKStep, and expanded existing non-identity mass matrix
infrastructure to support use of the fixed point nonlinear solver. Fixed bug for ERK method integration with static
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mass matrices.

An interface between ARKStep and the XBraid multigrid reduction in time (MGRIT) library [XBraid] has been
added to enable parallel-in-time integration. See the Multigrid Reduction in Time with XBraid section for more in-
formation and the example codes in examples/arkode/CXX_xbraid. This interface required the addition

of three new N_Vector operations to exchange vector data between computational nodes, see N_VBufSize (),
N_VBufPack (),and N_VBufUnpack (). These N_Vector operations are only used within the XBraid interface
and need not be implemented for any other context.

Updated the MRIStep time-stepping module in ARKode to support higher-order MRI-GARK methods [S2079], in-
cluding methods that involve solve-decoupled, diagonally-implicit treatment of the slow time scale.

Added the functions ARKStepSetLSNormFactor (), ARKStepSetMassLSNormFactor (), and
MRIStepSetLSNormFactor () to specify the factor for converting between integrator tolerances (WRMS norm)
and linear solver tolerances (L2 norm) i.e., tol_L2 = nrmfac * tol_WRMS.

Added new reset functions ARKStepReset (), ERKStepReset (),and MRIStepReset () to reset the
stepper time and state vector to user-provided values for continuing the integration from that point while re-
taining the integration history. These function complement the reinitialization functions ARKStepReInit (),
ERKStepReInit (),and MRIStepReInit () which reinitialize the stepper so that the problem integration
should resume as if started from scratch.

Added new functions ARKStepComputeState (), ARKStepGetNonlinearSystemData (),
MRIStepComputeState (),and MRIStepGetNonlinearSystemData () which advanced users might find
useful if providing a custom SUNNonlinSolSysFn ().

The expected behavior of SUNNonlinSolGetNumIters () and SUNNonlinSolGetNumConvFails () in
the SUNNonlinearSolver API have been updated to specify that they should return the number of nonlinear solver
iterations and convergence failures in the most recent solve respectively rather than the cuamulative number of itera-
tions and failures across all solves respectively. The API documentation and SUNDIALS provided SUNNonlinear-
Solver implementations have been updated accordingly. As before, the cumulative number of nonlinear iterations
may be retrieved by calling ARKStepGet NumNonlinSolvIters (), the cumulative number of failures with
ARKStepGetNumNonlinSolvConvFails (), or both with ARKStepGetNonlinSolvStats ().

A minor bug in checking the Jacobian evaluation frequency has been fixed. As a result codes using using a non-
default Jacobian update frequency through a call to ARKStepSetMaxStepsBetweenJac () will need to in-
crease the provided value by 1 to achieve the same behavior as before. Additionally, for greater clarity the functions
ARKStepSetMaxStepsBetweenLSet () and ARKStepSetMaxStepsBetweendJdac () have been depre-
cated and replaced with ARKStepSetLSetupFrequency () and ARKStepSetJacEvalFrequency () re-
spectively.

The NVECTOR_RAJA module has been updated to mirror the NVECTOR_CUDA module. Notably, the update adds
managed memory support to the NVECTOR_RAJA module. Users of the module will need to update any calls to the
N_VMake_Ra ja function because that signature was changed. This module remains experimental and is subject to
change from version to version.

The NVECTOR_TRILINOS module has been updated to work with Trilinos 12.18+. This update changes the local
ordinal type to always be an int.

Added support for CUDA v11.

1.1.5 Changes in v4.3.0

Fixed a bug in ARKode where the prototypes for ERKStepSetMinReduction () and
ARKStepSetMinReduction () were not included in arkode_erkstep.h and arkode_arkstep.h
respectively.

Fixed a bug where inequality constraint checking would need to be disabled and then re-enabled to update the in-
equality constraint values after resizing a problem. Resizing a problem will now disable constraints and a call to

1.1. Changes from previous versions 5
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ARKStepSetConstraints () or ERKStepSetConstraints () isrequired to re-enable constraint check-
ing for the new problem size.

Fixed a bug in the iterative linear solver modules where an error is not returned if the Atimes function is NULL or, if
preconditioning is enabled, the PSolve function is NULL.

Added the ability to control the CUDA kernel launch parameters for the NVECTOR_CUDA and
SUNMATRIX_CUSPARSE modules. These modules remain experimental and are subject to change from ver-

sion to version. In addition, the NVECTOR_ CUDA kernels were rewritten to be more flexible. Most users should see
equivalent performance or some improvement, but a select few may observe minor performance degradation with
the default settings. Users are encouraged to contact the SUNDIALS team about any perfomance changes that they
notice.

Added the optional function ARKStepSetJacTimesRhsFn () to specify an alternative implicit right-hand side
function for computing Jacobian-vector products with the internal difference quotient approximation.

Added new capabilities for monitoring the solve phase in the SUNNONLINSOL_NEWTON and
SUNNONLINSOL_FIXEDPOINT modules, and the SUNDIALS iterative linear solver modules. SUNDIALS
must be built with the CMake option SUNDIALS_BUILD_WITH_MONITORING to use these capabilties.

1.1.6 Changes in v4.2.0

Fixed a build system bug related to the Fortran 2003 interfaces when using the IBM XL compiler. When building the
Fortran 2003 interfaces with an XL compiler it is recommended to set CMAKE_Fortran_COMPILER to £2003,
x1£f2003,0rx1£2003_r.

Fixed a bug in how ARKode interfaces with a user-supplied, iterative, unscaled linear solver. In this case, ARKode
adjusts the linear solver tolerance in an attempt to account for the lack of support for left/right scaling matrices. Pre-
viously, ARKode computed this scaling factor using the error weight vector, ewt; this fix changes that to the residual
weight vector, rwt, that can differ from ewt when solving problems with non-identity mass matrix.

Fixed a similar bug in how ARKode interfaces with scaled linear solvers when solving problems with non-identity
mass matrices. Here, the left scaling matrix should correspond with rwt and the right scaling matrix with ewt;
these were reversed but are now correct.

Fixed a bug where a non-default value for the maximum allowed growth factor after the first step would be ignored.

The function ARKStepSetLinearSolutionScaling () was added to enable or disable the scaling applied to
linear system solutions with matrix-based linear solvers to account for a lagged value of y in the linear system matrix
e.g., M —~J or I —~J. Scaling is enabled by default when using a matrix-based linear solver.

Added two new functions, ARKStepSetMinReduction () and ERKStepSetMinReduction (), to change
the minimum allowed step size reduction factor after an error test failure.

Added a new SUNMat rix implementation, 7he SUNMATRIX_CUSPARSE Module, that interfaces to the sparse
matrix implementation from the NVIDIA cuSPARSE library. In addition, the The SUNLinSol_cuSolverSp_batchQR
Module SUNLinearSolver has been updated to use this matrix, as such, users of this module will need to update
their code. These modules are still considered to be experimental, thus they are subject to breaking changes even in
minor releases.

Added a new “stiff” interpolation module, based on Lagrange polynomial interpolation, that is accessible to each of
the ARKStep, ERKStep and MRIStep time-stepping modules. This module is designed to provide increased interpo-
lation accuracy when integrating stiff problems, as opposed to the ARKode-standard Hermite interpolation module
that can suffer when the IVP right-hand side has large Lipschitz constant. While the Hermite module remains the de-
fault, the new Lagrange module may be enabled using one of the routines ARKStepSet InterpolantType (),
ERKStepSetInterpolantType (),or MRIStepSetInterpolantType (). The serial example prob-

lem ark_brusselator. c has been converted to use this Lagrange interpolation module. Created accom-
panying routines ARKStepSetInterpolantDegree (), ARKStepSetInterpolantDegree () and
ARKStepSetInterpolantDegree () to provide user control over these interpolating polynomials. While the
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routines ARKStepSetDenseOrder (), ARKStepSetDenseOrder () and ARKStepSetDenseOrder ()
still exist, these have been deprecated and will be removed in a future release.

1.1.7 Changes in v4.1.0

Fixed a build system bug related to finding LAPACK/BLAS.
Fixed a build system bug related to checking if the KLU library works.

Fixed a build system bug related to finding PETSc when using the CMake variables PETSC_INCLUDES and
PETSC_LIBRARIES instead of PETSC_DIR.

Added a new build system option, CUDA_ARCH, that can be used to specify the CUDA architecture to compile for.

Fixed a bug in the Fortran 2003 interfaces to the ARKode Butcher table routines and structure. This includes chang-
ing the ARKodeButcherTable typetobe a type (c_ptr) in Fortran.

Added two utility functions, SUNDIALSFileOpen and SUNDIALSFileClose for creating/destroying file point-
ers that are useful when using the Fortran 2003 interfaces.

Added support for a user-supplied function to update the prediction for each implicit stage solution in ARKStep. If
supplied, this routine will be called after any existing ARKStep predictor algorithm completes, so that the predictor
may be modified by the user as desired. The new user-supplied routine has type ARKStepStagePredictFn, and
may be set by calling ARKStepSetStagePredictFn ().

The MRIStep module has been updated to support attaching different user data pointers to the inner and outer in-
tegrators. If applicable, user codes will need to add a call to ARKStepSetUserData () to attach their user data
pointer to the inner integrator memory as MRIStepSetUserData () will not set the pointer for both the inner and
outer integrators. The MRIStep examples have been updated to reflect this change.

Added support for constant damping to the SUNNonlinearSolver_FixedPoint mod-
ule when using Anderson acceleration. See SUNNonlinearSolver_FixedPoint description and the
SUNNonlinSolSetDamping FixedPoint () for more details.

1.1.8 Changes in v4.0.0

Build system changes

Increased the minimum required CMake version to 3.5 for most SUNDIALS configurations, and 3.10 when CUDA
or OpenMP with device offloading are enabled.

The CMake option BLAS_ENABLE and the variable BLAS_LIBRARIES have been removed to simplify builds
as SUNDIALS packages do not use BLAS directly. For third party libraries that require linking to BLAS,

the path to the BLAS library should be included in the _LIBRARIES variable for the third party library e.g.,
SUPERLUDIST_LIBRARIES when enabling SuperLU_DIST.

Fixed a bug in the build system that prevented the PThreads NVECTOR module from being built.
NVECTOR module changes

Two new functions were added to aid in creating custom NVECTOR objects. The constructor N_VNewEmpty ()
allocates an “empty” generic NVECTOR with the object’s content pointer and the function pointers in the operations
structure initialized to NULL. When used in the constructor for custom objects this function will ease the introduction
of any new optional operations to the NVECTOR API by ensuring only required operations need to be set. Addition-
ally, the function N_VCopyOps () has been added to copy the operation function pointers between vector objects.
When used in clone routines for custom vector objects these functions also will ease the introduction of any new op-
tional operations to the NVECTOR API by ensuring all operations are copied when cloning objects.
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Two new NVECTOR implementations, NVECTOR_MANY VECTOR and NVECTOR_MPIMANY VECTOR, have
been created to support flexible partitioning of solution data among different processing elements (e.g., CPU + GPU)
or for multi-physics problems that couple distinct MPI-based simulations together. This implementation is accompa-
nied by additions to user documentation and SUNDIALS examples.

One new required vector operation and ten new optional vector operations have been added to the NVEC-

TOR API. The new required operation, N_VGet Length (), returns the global length of an N_Vector. The
optional operations have been added to support the new NVECTOR_MPIMANY VECTOR implementation.

The operation N_VGetCommunicator () must be implemented by subvectors that are combined to cre-

ate an NVECTOR_MPIMANY VECTOR, but is not used outside of this context. The remaining nine opera-

tions are optional local reduction operations intended to eliminate unnecessary latency when performing vec-

tor reduction operations (norms, etc.) on distributed memory systems. The optional local reduction vector op-
erations are N_VDotProdLocal (), N_VMaxNormLocal (), N_VMinLocal (), N_VLINormLocal (),
N_VwSgrSumLocal (), N_VwSgrSumMaskLocal (), N_VInvTestLocal (), N_VConstrMaskLocal (),
and N_VMinQuotientLocal (). If an NVECTOR implementation defines any of the local operations as NULL,
then the NVECTOR_MPIMANY VECTOR will call standard NVECTOR operations to complete the computation.

An additional NVECTOR implementation, NVECTOR_MPIPLUSX, has been created to support the MPI+X
paradigm where X is a type of on-node parallelism (e.g., OpenMP, CUDA). The implementation is accompanied by
additions to user documentation and SUNDIALS examples.

The »_MPICuda and _MPIRa ja functions have been removed from the NVECTOR_CUDA and NVEC-
TOR_RAJA implementations respectively. Accordingly, the nvector_mpicuda.h, nvector_mpiraja.h,
libsundials_nvecmpicuda.lib, and libsundials_nvecmpicudaraja.lib files have been re-
moved. Users should use the NVECTOR_MPIPLUSX module coupled in conjunction with the NVECTOR_CUDA
or NVECTOR_RAIJA modules to replace the functionality. The necessary changes are minimal and should require
few code modifications. See the programs in examples/ida/mpicuda and examples/ida/mpiraja for
examples of how to use the NVECTOR_MPIPLUSX module with the NVECTOR_CUDA and NVECTOR_RAJA
modules respectively.

Fixed a memory leak in the NVECTOR_PETSC module clone function.

Made performance improvements to the NVECTOR_CUDA module. Users who utilize a non-default stream should
no longer see default stream synchronizations after memory transfers.

Added a new constructor to the NVECTOR_CUDA module that allows a user to provide custom allocate and free
functions for the vector data array and internal reduction buffer.

Added new Fortran 2003 interfaces for most NVECTOR modules. See the Using ARKode for Fortran Applications
section for more details.

Added three new NVECTOR utility functions, N_VGetVecAt IndexVectorArray ()
N_VSetVecAtIndexVectorArray (), and N_VNewVectorArray (), for working with N_Vector
arrays when using the Fortran 2003 interfaces.

SUNMatrix module changes

Two new functions were added to aid in creating custom SUNMATRIX objects. The constructor
SUNMatNewEmpty () allocates an “empty” generic SUNMATRIX with the object’s content pointer and the func-
tion pointers in the operations structure initialized to NULL. When used in the constructor for custom objects this
function will ease the introduction of any new optional operations to the SUNMATRIX API by ensuring only re-
quired operations need to be set. Additionally, the function SUNMat CopyOps () has been added to copy the opera-
tion function pointers between matrix objects. When used in clone routines for custom matrix objects these functions
also will ease the introduction of any new optional operations to the SUNMATRIX API by ensuring all operations
are copied when cloning objects.

A new operation, SUNMatMatvecSetup (), was added to the SUNMATRIX API. Users who have implemented
custom SUNMATRIX modules will need to at least update their code to set the corresponding ops structure mem-
ber, matvecsetup, to NULL.
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A new operation, SUNMatMatvecSetup (), was added to the SUNMATRIX API to perform any setup necessary
for computing a matrix-vector product. This operation is useful for SUNMATRIX implementations which need to
prepare the matrix itself, or communication structures before performing the matrix-vector product. Users who have
implemented custom SUNMATRIX modules will need to at least update their code to set the corresponding ops
structure member, matvecsetup, to NULL.

The generic SUNMATRIX API now defines error codes to be returned by SUNMATRIX operations. Operations
which return an integer flag indiciating success/failure may return different values than previously.

A new SUNMATRIX (and SUNLINEARSOLVER) implementation was added to facilitate the use of the Su-
perLU_DIST library with SUNDIALS.

Added new Fortran 2003 interfaces for most SUNMATRIX modules. See the Using ARKode for Fortran Applica-
tions section for more details.

SUNLinearSolver module changes

A new function was added to aid in creating custom SUNLINEARSOLVER objects. The constructor
SUNLinSolNewEmpty () allocates an “empty” generic SUNLINEARSOLVER with the object’s content pointer
and the function pointers in the operations structure initialized to NULL. When used in the constructor for custom
objects this function will ease the introduction of any new optional operations to the SUNLINEARSOLVER API by
ensuring only required operations need to be set.

The return type of the SUNLINEARSOLVER API function SUNLinSolLastFlag () has changed from long
int to sunindextype to be consistent with the type used to store row indices in dense and banded linear solver
modules.

Added a new optional operation to the SUNLINEARSOLVER API, SUNLinSolGetID (), thatreturns a
SUNLinearSolver_ID foridentifying the linear solver module.

The SUNLINEARSOLVER API has been updated to make the initialize and setup functions optional.

A new SUNLINEARSOLVER (and SUNMATRIX) implementation was added to facilitate the use of the Su-
perLU_DIST library with SUNDIALS.

Added a new SUNLinearSolver implementation, SUNLinearSolver_cuSolverSp_batchQR, which lever-
ages the NVIDIA cuSOLVER sparse batched QR method for efficiently solving block diagonal linear systems on
NVIDIA GPUs.

Added three new accessor functions to the SUNLinSol_KLU module, SUNLinSol_ KLUGetSymbolic (),
SUNLinSol_KLUGetNumeric (),and SUNLinSol_ KLUGetCommon (), to provide user access to the under-
lying KLU solver structures.

Added new Fortran 2003 interfaces for most SUNLINEARSOLVER modules. See the Using ARKode for Fortran
Applications section for more details.

SUNNonlinearSolver module changes

A new function was added to aid in creating custom SUNNONLINEARSOLVER objects. The constructor
SUNNonlinSolNewEmpty () allocates an “empty” generic SUNNONLINEARSOLVER with the object’s con-
tent pointer and the function pointers in the operations structure initialized to NULL. When used in the constructor
for custom objects this function will ease the introduction of any new optional operations to the SUNNONLINEAR-
SOLVER API by ensuring only required operations need to be set.

To facilitate the use of user supplied nonlinear solver convergence test functions the
SUNNonlinSolSetConvTestFn () function in the SUNNONLINEARSOLVER API has been updated to

take a void« data pointer as input. The supplied data pointer will be passed to the nonlinear solver convergence test
function on each call.

The inputs values passed to the first two inputs of the SUNNonlinSolSolve () function in the SUNNONLIN-
EARSOLVER have been changed to be the predicted state and the initial guess for the correction to that state. Ad-
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ditionally, the definitions of SUNNonlinSolLSetupFn and SUNNonlinSolLSolveFn inthe SUNNONLIN-
EARSOLVER API have been updated to remove unused input parameters.

Added a new SUNNonlinearSolver implementation, SUNNonlinsol_PetscSNES, which interfaces to the
PETSc SNES nonlinear solver APL

Added new Fortran 2003 interfaces for most SUNNONLINEARSOLVER modules. See the Using ARKode for For-
tran Applications section for more details.

ARKode changes

The MRIStep module has been updated to support explicit, implicit, or IMEX methods as the fast integrator using
the ARKStep module. As a result some function signatures have been changed including MRTStepCreate ()
which now takes an ARKStep memory structure for the fast integration as an input.

Fixed a bug in the ARKStep time-stepping module that would result in an infinite loop if the nonlinear solver failed
to converge more than the maximum allowed times during a single step.

Fixed a bug that would result in a “too much accuracy requested” error when using fixed time step sizes with explicit
methods in some cases.

Fixed a bug in ARKStep where the mass matrix linear solver setup function was not called in the Matrix-free case.

Fixed a minor bug in ARKStep where an incorrect flag is reported when an error occurs in the mass matrix setup or
Jacobian-vector product setup functions.

Fixed a memeory leak in FARKODE when not using the default nonlinear solver.

The reinitialization functions ERKStepReInit (), ARKStepReInit (),and MRIStepReInit () have been
updated to retain the minimum and maxiumum step size values from before reinitialization rather than resetting them
to the default values.

Removed extraneous calls to N_VMin () for simulations where the scalar valued absolute tolerance, or all entries
of the vector-valued absolute tolerance array, are strictly positive. In this scenario, ARKode will remove at least one
global reduction per time step.

The ARKLS interface has been updated to only zero the Jacobian matrix before calling a user-supplied Jacobian
evaluation function when the attached linear solver has type SUNLINEARSOLVER_DIRECT.

A new linear solver interface function ARKLsLinSysFn () was added as an alternative method for evaluating the
linear system A = M — ~.J.

Added two new embedded ARK methods of orders 4 and 5 to ARKode (from [KC2019]).

Support for optional inequality constraints on individual components of the solution vector has been added

the ARKode ERKStep and ARKStep modules. See the descriptions of ERKStepSetConstraints () and
ARKStepSetConstraints () for more details. Note that enabling constraint handling requires the NVECTOR
operations N_VMinQuotient (), N_VConstrMask (),and N_VCompare () that were not previously required
by ARKode.

Added two new ‘Get’ functions to ARKStep, ARKStepGetCurrentGamma (), and
ARKStepGetCurrentState (), that may be useful to users who choose to provide their own nonlinear
solver implementation.

Add two new ‘Set’ functions to MRIStep, MRIStepSetPreInnerFn () and MRIStepSetPostInnerFn ()
for performing communication or memory transfers needed before or after the inner integration.

A new Fortran 2003 interface to ARKode was added. This includes Fortran 2003 interfaces to the ARKStep, ERK-
Step, and MRIStep time-stepping modules. See the Using ARKode for Fortran Applications section for more details.
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1.1.9 Changes in v3.1.0

An additional NVECTOR implementation was added for the Tpetra vector from the Trilinos library to facilitate in-
teroperability between SUNDIALS and Trilinos. This implementation is accompanied by additions to user documen-
tation and SUNDIALS examples.

A bug was fixed where a nonlinear solver object could be freed twice in some use cases.

The EXAMPLES_ENABLE_RAJA CMake option has been removed. The option EXAMPLES_ENABLE_CUDA en-
ables all examples that use CUDA including the RAJA examples with a CUDA back end (if the RAJA NVECTOR is
enabled).

The implementation header file arkode_impl.h is no longer installed. This means users who are directly manipulating
the ARKodeMenm structure will need to update their code to use ARKode’s public API.

Python is no longer required to run make test and make test_install.

Fixed a bug in ARKodeButcherTable_Write when printing a Butcher table without an embedding.

1.1.10 Changes in v3.0.2

Added information on how to contribute to SUNDIALS and a contributing agreement.

1.1.11 Changes in v3.0.1

A bug in ARKode where single precision builds would fail to compile has been fixed.

1.1.12 Changes in v3.0.0

The ARKode library has been entirely rewritten to support a modular approach to one-step methods, which should
allow rapid research and development of novel integration methods without affecting existing solver functionality.
To support this, the existing ARK-based methods have been encapsulated inside the new ARKStep time-stepping
module. Two new time-stepping modules have been added:

* The ERKStep module provides an optimized implementation for explicit Runge-Kutta methods with reduced
storage and number of calls to the ODE right-hand side function.

* The MRIStep module implements two-rate explicit-explicit multirate infinitesimal step methods utilizing
different step sizes for slow and fast processes in an additive splitting.

This restructure has resulted in numerous small changes to the user interface, particularly the suite of “Set” rou-
tines for user-provided solver parameters and “Get” routines to access solver statistics, that are now prefixed with the
name of time-stepping module (e.g., ARKStep or ERKStep) instead of ARKode. Aside from affecting the names
of these routines, user-level changes have been kept to a minimum. However, we recommend that users consult both
this documentation and the ARKode example programs for further details on the updated infrastructure.

As part of the ARKode restructuring an ARKodeBut cherTable structure has been added for storing Butcher ta-
bles. Functions for creating new Butcher tables and checking their analytic order are provided along with other util-
ity routines. For more details see Butcher Table Data Structure.

Two changes were made in the initial step size algorithm:
* Fixed an efficiency bug where an extra call to the right hand side function was made.

* Changed the behavior of the algorithm if the max-iterations case is hit. Before the algorithm would exit with
the step size calculated on the penultimate iteration. Now it will exit with the step size calculated on the final
iteration.

1.1. Changes from previous versions 11



User Documentation for ARKode, v4.6.1

ARKode’s dense output infrastructure has been improved to support higher-degree Hermite polynomial interpolants
(up to degree 5) over the last successful time step.

ARKode’s previous direct and iterative linear solver interfaces, ARKDLS and ARKSPILS, have been merged into

a single unified linear solver interface, ARKLS, to support any valid SUNLINSOL module. This includes DIRECT
and ITERATIVE types as well as the new MATRIX_ITERATIVE type. Details regarding how ARKLS utilizes lin-
ear solvers of each type as well as discussion regarding intended use cases for user-supplied SUNLinSol implemen-
tations are included in the chapter Description of the SUNLinearSolver module. All ARKode examples programs and
the standalone linear solver examples have been updated to use the unified linear solver interface.

The user interface for the new ARKLS module is very similar to the previous ARKDLS and ARKSPILS interfaces.
Additionally, we note that Fortran users will need to enlarge their iout array of optional integer outputs, and update
the indices that they query for certain linear-solver-related statistics.

The names of all constructor routines for SUNDIALS-provided SUNLinSol implementations have been up-

dated to follow the naming convention SUNLinSol_* where « is the name of the linear solver. The new

names are SUNLinSol_Band, SUNLinSol_Dense, SUNLinSol_ KLU, SUNLinSol_LapackBand,
SUNLinSol_LapackDense, SUNLinSol_PCG, SUNLinSol_SPBCGS, SUNLinSol_SPFGMR,
SUNLinSol_SPGMR, SUNLinSol_SPTFQMR, and SUNLinSol_SuperLUMT. Solver-specific “set” routine
names have been similarly standardized. To minimize challenges in user migration to the new names, the previous
routine names may still be used; these will be deprecated in future releases, so we recommend that users migrate to
the new names soon. All ARKode example programs and the standalone linear solver examples have been updated to
use the new naming convention.

The SUNBandMat rix constructor has been simplified to remove the storage upper bandwidth argument.

SUNDIALS integrators have been updated to utilize generic nonlinear solver modules defined through the SUN-
NONLINSOL API. This API will ease the addition of new nonlinear solver options and allow for external or user-
supplied nonlinear solvers. The SUNNONLINSOL API and SUNDIALS provided modules are described in De-
scription of the SUNNonlinearSolver Module and follow the same object oriented design and implementation used
by the NVector, SUNMatrix, and SUNLinSol modules. Currently two SUNNONLINSOL implementations are pro-
vided, SUNNonlinSol_Newton and SUNNonlinSol_FixedPoint. These replicate the previous integrator specific im-
plementations of a Newton iteration and an accelerated fixed-point iteration, respectively. Example programs using
each of these nonlinear solver modules in a standalone manner have been added and all ARKode example programs
have been updated to use generic SUNNonlinSol modules.

As with previous versions, ARKode will use the Newton solver (now provided by SUNNonlinSol_Newton) by de-
fault. Use of the ARKStepSetLinear () routine (previously named ARKodeSetLinear) will indicate that

the problem is linearly-implicit, using only a single Newton iteration per implicit stage. Users wishing to switch

to the accelerated fixed-point solver are now required to create a SUNNonlinSol_FixedPoint object and attach that
to ARKode, instead of calling the previous ARKodeSetFixedPoint routine. See the documentation sections A
skeleton of the user’s main program, Nonlinear solver interface functions, and The SUNNonlinearSolver_FixedPoint
implementation for further details, or the serial C example program ark_brusselator_fp.c for an example.

Three fused vector operations and seven vector array operations have been added to the NVECTOR API.

These optional operations are disabled by default and may be activated by calling vector specific routines af-

ter creating an NVector (see Description of the NVECTOR Modules for more details). The new operations

are intended to increase data reuse in vector operations, reduce parallel communication on distributed mem-

ory systems, and lower the number of kernel launches on systems with accelerators. The fused operations are
N_VLinearCombination, N_VScaleAddMulti, and N_VDotProdMulti, and the vector array opera-
tions are N_VLinearCombinationVectorArray, N_VScaleVectorArray, N_VConstVectorArray,
N_VWrmsNormVectorArray, N_VWrmsNormMaskVectorArray, N_VScaleAddMultiVectorArray,
and N_VLinearCombinationVectorArray. If an NVector implementation defines any of these operations as
NULL, then standard NVector operations will automatically be called as necessary to complete the computation.

Multiple changes to the CUDA NVECTOR were made:

¢ Changed the N_VMake_Cuda function to take a host data pointer and a device data pointer instead of an
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N_VectorContent_Cuda object.
* Changed N_VGetLength_Cuda to return the global vector length instead of the local vector length.
* Added N_VGetLocalLength_Cuda to return the local vector length.
¢ Added N_VGetMPIComm_ Cuda to return the MPI communicator used.
* Removed the accessor functions in the namespace suncudavec.

* Added the ability to set the cudaStream_t used for execution of the CUDA NVECTOR kernels. See the
function N_VSetCudaStreams_Cuda.

¢ Added N_VNewManaged_Cuda, N_VMakeManaged_Cuda, and N_VIsManagedMemory_Cuda func-
tions to accommodate using managed memory with the CUDA NVECTOR.

Multiple changes to the RAJA NVECTOR were made:
* Changed N_VGetLength_Raja to return the global vector length instead of the local vector length.
¢ Added N_VGetLocalLength_Raja to return the local vector length.
¢ Added N_VGetMPIComm_Ra ja to return the MPI communicator used.
* Removed the accessor functions in the namespace sunrajavec.

A new NVECTOR implementation for leveraging OpenMP 4.5+ device offloading has been added, NVEC-
TOR_OpenMPDEV. See The NVECTOR_OPENMPDEV Module for more details.

1.1.13 Changes in v2.2.1

Fixed a bug in the CUDA NVECTOR where the N_VInvTest operation could write beyond the allocated vector
data.

Fixed library installation path for multiarch systems. This fix changes the default library installation path
to CMAKE_INSTALL_PREFIX/CMAKE_INSTALIL_LIBDIR from CMAKE_INSTALIL_PREFIX/lib.
CMAKE_INSTALL_LIBDIR is automatically set, but is available as a CMAKE option that can modified.

1.1.14 Changes in v2.2.0

Fixed a problem with setting sunindextype which would occur with some compilers (e.g. armclang) that did not
define_ STDC_VERSION__ .

Added hybrid MPI/CUDA and MPI/RAJA vectors to allow use of more than one MPI rank when using a GPU sys-
tem. The vectors assume one GPU device per MPI rank.

Changed the name of the RAJA NVECTOR library to 1ibsundials_nveccudaraja.lib from
libsundials_nvecraja.lib to better reflect that we only support CUDA as a backend for RAJA currently.

Several changes were made to the build system:
e CMake 3.1.3 is now the minimum required CMake version.

* Deprecate the behavior of the SUNDIALS_INDEX_TYPE CMake option and added the
SUNDIALS_INDEX_SIZE CMake option to select the sunindextype integer size.

¢ The native CMake FindMPI module is now used to locate an MPI installation.

 If MPI is enabled and MPI compiler wrappers are not set, the build system will check if
CMAKE_<language>_COMPILER can compile MPI programs before trying to locate and use an MPI
installation.
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* The previous options for setting MPI compiler wrappers and the executable for running MPI programs have
been have been depreated. The new options that align with those used in native CMake FindMPI module are
MPI_C_COMPILER,MPI_CXX_COMPILER,MPI_Fortran_COMPILER, and MPIEXEC_EXECUTABLE.

* When a Fortran name-mangling scheme is needed (e.g., ENABLE_LAPACK is ON) the build system
will infer the scheme from the Fortran compiler. If a Fortran compiler is not available or the inferred
or default scheme needs to be overridden, the advanced options SUNDIALS_F77_FUNC_CASE and
SUNDIALS_F77_FUNC_UNDERSCORES can be used to manually set the name-mangling scheme and by-
pass trying to infer the scheme.

* Parts of the main CMakeLists.txt file were moved to new files in the src and example directories to make
the CMake configuration file structure more modular.

1.1.15 Changes in v2.1.2
Updated the minimum required version of CMake to 2.8.12 and enabled using rpath by default to locate shared li-
braries on OSX.

Fixed Windows specific problem where sunindextype was not correctly defined when using 64-bit integers for the
SUNDIALS index type. On Windows sunindextype is now defined as the MSVC basic type __int 64.

Added sparse SUNMatrix “Reallocate” routine to allow specification of the nonzero storage.

Updated the KLU SUNLinearSolver module to set constants for the two reinitialization types, and fixed a bug in the
full reinitialization approach where the sparse SUNMatrix pointer would go out of scope on some architectures.

Updated the “ScaleAdd” and “ScaleAddI” implementations in the sparse SUNMatrix module to more optimally han-
dle the case where the target matrix contained sufficient storage for the sum, but had the wrong sparsity pattern. The

sum now occurs in-place, by performing the sum backwards in the existing storage. However, it is still more efficient
if the user-supplied Jacobian routine allocates storage for the sum I + «J or M + ~.J manually (with zero entries if

needed).

Changed LICENSE install path to instdir/include/sundials.

1.1.16 Changes in v2.1.1

Fixed a potential memory leak in the SPGMR and SPFGMR linear solvers: if “Initialize” was called multiple times
then the solver memory was reallocated (without being freed).

Fixed a minor bug in the ARKRelnit routine, where a flag was incorrectly set to indicate that the problem had been
resized (instead of just re-initialized).

Fixed C++11 compiler errors/warnings about incompatible use of string literals.

Updated KLU SUNLinearSolver module to use a t ypede £ for the precision-specific solve function to be used (to
avoid compiler warnings).

Added missing typecasts for some (voidx) pointers (again, to avoid compiler warnings).

Bugfix in sunmatrix_sparse.c where we had used int instead of sunindextype in one location.
Added missing #include <stdio.h>in NVECTOR and SUNMATRIX header files.

Added missing prototype for ARKSpilsGetNumMTSetups.

Fixed an indexing bug in the CUDA NVECTOR implementation of N_VWrmsNormMask and revised the RAJA
NVECTOR implementation of N_VWrmsNormMask to work with mask arrays using values other than zero or one.
Replaced double with realtype in the RAJA vector test functions.
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Fixed compilation issue with GCC 7.3.0 and Fortran programs that do not require a SUNMatrix or SUNLinearSolver
module (e.g. iterative linear solvers, explicit methods, fixed point solver, etc.).

1.1.17 Changes in v2.1.0

Added NVECTOR print functions that write vector data to a specified file (e.g. N_VPrintFile_Serial).

Added make test andmake test_install options to the build system for testing SUNDIALS after building
with make and installing with make install respectively.

1.1.18 Changes in v2.0.0

All interfaces to matrix structures and linear solvers have been reworked, and all example programs have been up-
dated. The goal of the redesign of these interfaces was to provide more encapsulation and ease in interfacing custom
linear solvers and interoperability with linear solver libraries.

Specific changes include:

* Added generic SUNMATRIX module with three provided implementations: dense, banded and sparse. These
replicate previous SUNDIALS Dls and Sls matrix structures in a single object-oriented APL

¢ Added example problems demonstrating use of generic SUNMATRIX modules.

* Added generic SUNLINEARSOLVER module with eleven provided implementations: dense, banded, LA-
PACK dense, LAPACK band, KLU, SuperLU_MT, SPGMR, SPBCGS, SPTFQMR, SPFGMR, PCG. These
replicate previous SUNDIALS generic linear solvers in a single object-oriented API.

¢ Added example problems demonstrating use of generic SUNLINEARSOLVER modules.

» Expanded package-provided direct linear solver (Dls) interfaces and scaled, preconditioned, iterative linear
solver (Spils) interfaces to utilize generic SUNMATRIX and SUNLINEARSOLVER objects.

* Removed package-specific, linear solver-specific, solver modules (e.g. CVDENSE, KINBAND, IDAKLU,
ARKSPGMR) since their functionality is entirely replicated by the generic Dls/Spils interfaces and SUNLIN-
EARSOLVER/SUNMATRIX modules. The exception is CVDIAG, a diagonal approximate Jacobian solver
available to CVODE and CVODES.

* Converted all SUNDIALS example problems to utilize new generic SUNMATRIX and SUNLINEAR-
SOLVER objects, along with updated DIs and Spils linear solver interfaces.

* Added Spils interface routines to ARKode, CVODE, CVODES, IDA and IDAS to allow specification of a
user-provided “JTSetup” routine. This change supports users who wish to set up data structures for the user-
provided Jacobian-times-vector (“JTimes”) routine, and where the cost of one JTSetup setup per Newton itera-
tion can be amortized between multiple JTimes calls.

Two additional NVECTOR implementations were added — one for CUDA and one for RAJA vectors. These vectors
are supplied to provide very basic support for running on GPU architectures. Users are advised that these vectors
both move all data to the GPU device upon construction, and speedup will only be realized if the user also conducts
the right-hand-side function evaluation on the device. In addition, these vectors assume the problem fits on one GPU.
Further information about RAJA, users are referred to the web site, https://software.llnl.gov/RAJA/. These additions
are accompanied by additions to various interface functions and to user documentation.

All indices for data structures were updated to a new sunindextype that can be configured to be a 32- or 64-bit
integer data index type. sunindextype is defined to be int32_t or int 64_t when portable types are sup-
ported, otherwise it is defined as int or long int. The Fortran interfaces continue to use long int for indices,
except for their sparse matrix interface that now uses the new sunindextype. This new flexible capability for
index types includes interfaces to PETSc, hypre, SuperLU_MT, and KLU with either 32-bit or 64-bit capabilities de-
pending how the user configures SUNDIALS.
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To avoid potential namespace conflicts, the macros defining booleantype values TRUE and FALSE have been
changed to SUNTRUE and SUNFALSE respectively.

Temporary vectors were removed from preconditioner setup and solve routines for all packages. It is assumed that all
necessary data for user-provided preconditioner operations will be allocated and stored in user-provided data struc-
tures.

The file include/sundials_fconfig.h was added. This file contains SUNDIALS type information for use
in Fortran programs.

Added functions SUNDIALSGetVersion and SUNDIALSGetVersionNumber to get SUNDIALS release version in-
formation at runtime.

The build system was expanded to support many of the xSDK-compliant keys. The xSDK is a movement in scien-
tific software to provide a foundation for the rapid and efficient production of high-quality, sustainable extreme-scale
scientific applications. More information can be found at, https://xsdk.info.

In addition, numerous changes were made to the build system. These include the addition of separate
BLAS_ENABLE and BLAS_LIBRARIES CMake variables, additional error checking during CMake config-
uration, minor bug fixes, and renaming CMake options to enable/disable examples for greater clarity and an
added option to enable/disable Fortran 77 examples. These changes included changing ENABLE_EXAMPLES to
ENABLE_EXAMPLES_C, changing CXX_ENABLE to EXAMPLES_ENABLE_ CXX, changing F 90_ENABLE to
EXAMPLES_ENABLE_F90, and adding an EXAMPLES_ENABLE_F 77 option.

Corrections and additions were made to the examples, to installation-related files, and to the user documentation.

1.1.19 Changes in v1.1.0

We have included numerous bugfixes and enhancements since the v1.0.2 release.
The bugfixes include:

¢ For each linear solver, the various solver performance counters are now initialized to O in both the solver spec-
ification function and in the solver’s 1init function. This ensures that these solver counters are initialized
upon linear solver instantiation as well as at the beginning of the problem solution.

* The choice of the method vs embedding the Billington and TRBDF2 explicit Runge-Kutta methods were
swapped, since in those the lower-order coefficients result in an A-stable method, while the higher-order co-
efficients do not. This change results in significantly improved robustness when using those methods.

* A bug was fixed for the situation where a user supplies a vector of absolute tolerances, and also uses the vector
Resize() functionality.

¢ A bug was fixed wherein a user-supplied Butcher table without an embedding is supplied, and the user is run-
ning with either fixed time steps (or they do adaptivity manually); previously this had resulted in an error since
the embedding order was below 1.

* Numerous aspects of the documentation were fixed and/or clarified.
The feature changes/enhancements include:

* Two additional NVECTOR implementations were added — one for Hypre (parallel) ParVector vectors, and one
for PETSc vectors. These additions are accompanied by additions to various interface functions and to user
documentation.

e Each NVECTOR module now includes a function, N_VGetVectorID, that returns the NVECTOR module
name.

* A memory leak was fixed in the banded preconditioner and banded-block-diagonal preconditioner interfaces.
In addition, updates were done to return integers from linear solver and preconditioner ‘free’ routines.
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1.2

The Krylov linear solver Bi-CGstab was enhanced by removing a redundant dot product. Various additions
and corrections were made to the interfaces to the sparse solvers KLU and SuperLU_MT, including support for
CSR format when using KLU.

The ARKode implicit predictor algorithms were updated: methods 2 and 3 were improved slightly, a new pre-
dictor approach was added, and the default choice was modified.

The underlying sparse matrix structure was enhanced to allow both CSR and CSC matrices, with CSR sup-
ported by the KLU linear solver interface. ARKode interfaces to the KLU solver from both C and Fortran were
updated to enable selection of sparse matrix type, and a Fortran-90 CSR example program was added.

The missing ARKSpilsGetNumMtimesEvals () function was added — this had been included in the previ-
ous documentation but had not been implemented.

The handling of integer codes for specifying built-in ARKode Butcher tables was enhanced. While a global
numbering system is still used, methods now have #defined names to simplify the user interface and to stream-
line incorporation of new Butcher tables into ARKode.

The maximum number of Butcher table stages was increased from 8 to 15 to accommodate very high order
methods, and an 8th-order adaptive ERK method was added.

Support was added for the explicit and implicit methods in an additive Runge-Kutta method to utilize different
stage times, solution and embedding coefficients, to support new SSP-ARK methods.

The FARKODE interface was extended to include a routine to set scalar/array-valued residual tolerances, to
support Fortran applications with non-identity mass-matrices.

Reading this User Guide

This user guide is a combination of general usage instructions and specific example programs. We expect that some
readers will want to concentrate on the general instructions, while others will refer mostly to the examples, and the
organization is intended to accommodate both styles.

The structure of this document is as follows:

1.3

In the next section we provide a thorough presentation of the underlying mathematics used within the ARKode
family of solvers.

We follow this with an overview of how the source code for ARKode is organized.

The largest section follows, providing a full account of the ARKStep module user interface, including a de-
scription of all user-accessible functions and outlines for usage in serial and parallel applications. Since
ARKode is written in C, we first present a section on using ARKStep for C and C++ applications, followed
with a separate section on using ARKode within Fortran applications.

The much smaller section describing the ERKStep time-stepping module, using ERKStep for C and C++ ap-
plications, follows.

Subsequent sections discuss shared features between ARKode and the rest of the SUNDIALS library: vector
data structures, matrix data structures, linear solver data structures, and the installation procedure.

The final sections catalog the full set of ARKode constants, that are used for both input specifications and re-
turn codes, and the full set of Butcher tables that are packaged with ARKode.

SUNDIALS Release License

All SUNDIALS packages are released open source, under the BSD 3-Clause license. The only requirements of the
license are preservation of copyright and a standard disclaimer of liability. The full text of the license and an addi-
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tional notice are provided below and may also be found in the LICENSE and NOTICE files provided with all SUN-
DIALS packages.

PLEASE NOTE If you are using SUNDIALS with any third party libraries linked in (e.g., LAPACK, KLU, Su-
perLU_MT, PETSc, or hypre), be sure to review the respective license of the package as that license may have more
restrictive terms than the SUNDIALS license. For example, if someone builds SUNDIALS with a statically linked
KLU, the build is subject to terms of the more-restrictive LGPL license (which is what KLU is released with) and not
the SUNDIALS BSD license anymore.

1.3.1 BSD 3-Clause License

Copyright (c) 2002-2020, Lawrence Livermore National Security and Southern Methodist University.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met:

 Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

 Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the fol-
lowing disclaimer in the documentation and/or other materials provided with the distribution.

* Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.

IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

1.3.2 Additional Notice

This work was produced under the auspices of the U.S. Department of Energy by Lawrence Livermore National Lab-
oratory under Contract DE-AC52-07NA27344.

This work was prepared as an account of work sponsored by an agency of the United States Government. Neither
the United States Government nor Lawrence Livermore National Security, LLC, nor any of their employees makes
any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer,
or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or Lawrence Livermore National Security, LLC.

The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Gov-
ernment or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorse-
ment purposes.
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1.3.3 SUNDIALS Release Numbers

LLNL-CODE-667205 (ARKODE)
UCRL-CODE-155951 (CVODE)
UCRL-CODE-155950 (CVODES)
UCRL-CODE-155952 (IDA)
UCRL-CODE-237203 (IDAS)
LLNL-CODE-665877 (KINSOL)

1.3. SUNDIALS Release License
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Chapter 2

Mathematical Considerations

ARKode solves ODE initial value problems (IVP) in RY posed in the form

M)y = f(t.y),  y(to) = vo 2.1

Here, t is the independent variable (e.g. time), and the dependent variables are given by 4 € R™, where we use the
notation g to denote dy/dt.

For each value of ¢, M (t) is a user-specified linear operator from RN — R This operator is assumed to be non-
singular and independent of y. For standard systems of ordinary differential equations and for problems arising from
the spatial semi-discretization of partial differential equations using finite difference, finite volume, or spectral fi-
nite element methods, M is typically the identity matrix, I. For PDEs using standard finite-element spatial semi-
discretizations, M is typically a well-conditioned mass matrix that is fixed throughout a simulation (or at least fixed
between spatial rediscretization events).

The ODE right-hand side is given by the function f (¢, y) — in general we make no assumption that the problem (2.1)
is autonomous (i.e., f = f(y)) or linear (f = Ay). In general, the time integration methods within ARKode sup-
port additive splittings of this right-hand side function, as described in the subsections that follow. Through these
splittings, the time-stepping methods currently supplied with ARKode are designed to solve stiff, nonstiff, mixed
stiff/nonstiff, and multirate problems. As per Ascher and Petzold [AP1998], a problem is “stiff” if the stepsize
needed to maintain stability of the forward Euler method is much smaller than that required to represent the solution
accurately.

In the sub-sections that follow, we elaborate on the numerical methods utilized in ARKode. We first discuss the
“single-step” nature of the ARKode infrastructure, including its usage modes and approaches for interpolated so-
Iution output. We then discuss the current suite of time-stepping modules supplied with ARKode, including the
ARKStep module for additive Runge-Kutta methods, the ERKStep module that is optimized for explicit Runge-Kutta
methods, and the MRIStep module for multirate infinitesimal step (MIS) based methods. We then discuss the adap-
tive temporal error controllers shared by the time-stepping modules, including discussion of our choice of norms for
measuring errors within various components of the solver.

We then discuss the nonlinear and linear solver strategies used by ARKode’s time-stepping modules for solving im-
plicit algebraic systems that arise in computing each stage and/or step: nonlinear solvers, linear solvers, precondi-
tioners, error control within iterative nonlinear and linear solvers, algorithms for initial predictors for implicit stage
solutions, and approaches for handling non-identity mass-matrices.

We conclude with a section describing ARKode’s rootfinding capabilities, that may be used to stop integration of a
problem prematurely based on traversal of roots in user-specified functions.
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2.1 Adaptive single-step methods

The ARKode infrastructure is designed to support single-step, IVP integration methods, i.e.

Yn = Qp(yn—la hn)

where y,,_1 is an approximation to the solution y(t,,_1), ¥, is an approximation to the solution y(¢,), t, = t,—1 +
hy,, and the approximation method is represented by the function .

The choice of step size h,, is determined by the time-stepping method (based on user-provided inputs, typically accu-
racy requirements). However, users may place minimum/maximum bounds on h,, if desired.

ARKode’s time stepping modules may be run in a variety of “modes”:

* NORMAL - The solver will take internal steps until it has just overtaken a user-specified output time, toy,, in
the direction of integration, i.e. t,,—1 < tou < t, for forward integration, or t,, < toy < t,—1 for backward
integration. It will then compute an approximation to the solution y(%.y) by interpolation (using one of the
dense output routines described in the section Interpolation).

* ONE-STEP - The solver will only take a single internal step y,—1 — ¥, and then return control back to the
calling program. If this step will overtake ¢, then the solver will again return an interpolated result; otherwise
it will return a copy of the internal solution y,,.

e NORMAL-TSTOP - The solver will take internal steps until the next step will overtake ¢, It will then limit
this next step so that t,, = t,,_1 + h,, = tou, and once the step completes it will return a copy of the internal
solution y,,.

¢ ONE-STEP-TSTOP - The solver will check whether the next step will overtake ¢, — if not then this mode is
identical to “one-step” above; otherwise it will limit this next step so that ¢,, = ¢,,_1 +h,, = tou. In either case,
once the step completes it will return a copy of the internal solution v, .

We note that interpolated solutions may be slightly less accurate than the internal solutions produced by the solver.
Hence, to ensure that the returned value has full method accuracy one of the “tstop” modes may be used.

2.2 Interpolation

As mentioned above, the time-stepping modules in ARKode support interpolation of solutions () and derivatives
y(d) (tour), Where ¢, occurs within a completed time step from ¢,,_1 — ¢,,. Additionally, this module supports ex-
trapolation of solutions and derivatives for ¢ outside this interval (e.g. to construct predictors for iterative nonlinear
and linear solvers). To this end, ARKode currently supports construction of polynomial interpolants p,(¢) of polyno-
mial degree up to ¢ = 5, although users may select interpolants of lower degree.

ARKode provides two complementary interpolation approaches, both of which are accessible from any of the time-
stepping modules: “Hermite” and “Lagrange”. The former approach has been included with ARKode since its in-
ception, and is more suitable for non-stiff problems; the latter is a new approach that is designed to provide increased
accuracy when integrating stiff problems. Both are described in detail below.

2.2.1 Hermite interpolation module

For non-stiff problems, polynomial interpolants of Hermite form are provided. Rewriting the IVP (2.1) in standard
form,

Y= f(t’ y)v y(tO) = Yo-
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we typically construct temporal interpolants using the data {yn,l7 fn,l, Uns fn }, where here we use the simplified

notation fk to denote f (tk, yx ). Defining a normalized “time” variable, 7, for the most-recently-computed solution

interval t,,_1 — t,, as

t—tn,
T(t) = h ?

we then construct the interpolants p,(t) as follows:

* g = 0: constant interpolant

Yn—1 +yn
po(T) = —/————.

e g = 1: linear Lagrange interpolant

pl(T) = —TYn—1+ (1 + T) Yn-

* g = 2: quadratic Hermite interpolant

P2(7) = T2 Y1 + (1 = 72) Y + hn (T + 72) f.

* g = 3: cubic Hermite interpolant

p3(T) = (37‘2 + 27‘3) Yn—1+ (1 — 3r2 — 27‘3) Yn + hn<7'2 + 7'3) fn,l + hp (T + 212 + 7'3) fn

¢ q = 4: quartic Hermite interpolant

pa(T) =

+ho(r +27% +7%) fo +

ha ;
(=677 = 167" = 97%) yo 1 + (1 + 67 +167° + 97%) g, + (=577 — 1477 = 07%) fou s

27hy,
4

(=7 =273 —72) fa,

h

3 3

n P n 1 . . . . . ore
where f, = f <tn — —, D3 <—> ) . We point out that interpolation at this degree requires an additional

evaluation of the full right-hand side function f(¢,), thereby increasing its cost in comparison with ps(t).

* g = 5: quintic Hermite interpolant

ps(7) = (547° +1357% 4+ 1107° + 3072) y,_1 + (1 — 5475 — 1357 — 1107° — 307%) y,

+

+

. ho, R
(277° + 637 + 4973 +1372) f,,_1 + Z<27T5 + 7274 + 6773 + 267% 4+ 7) £,

fin
4
P - hn .
Z(8175 + 18974 + 13573 + 2772) f, + Z(8175 + 21671 + 18973 + 5472) £,

. . B 1 A P 2hy, 2 . . .
where f, = f <tn — —,P4 (—)) and f, = f (tn — —, D4 (—)) We point out that interpolation at

3 3 3 3

this degree requires four additional evaluations of the full right-hand side function f (t,y), thereby significantly
increasing its cost over p4(t).

We note that although interpolants of order ¢ > 5 are possible, these are not currently implemented due to their
increased computing and storage costs.

2.2. Interpolation
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2.2.2 Lagrange interpolation module

For stiff problems where f may have large Lipschitz constant, polynomial interpolants of Lagrange form are pro-
vided. These interpolants are constructed using the data {y,, yn—1,-- ., Yn—» } Where 0 < v < 5. These polynomials
have the form

p(t) = Z Yn—;p;j(t), where
j=0

oot .
p;i(t) = H ) j=0,...,u
=0, N9

Since we assume that the solutions y,,—; have length much larger than » < 5 in ARKode-based simulations, we
evaluate p at any desired ¢ € R by first evaluating the Lagrange polynomial basis functions at the input value for
t, and then performing a simple linear combination of the vectors {yy }}_,. Derivatives p@(t) may be evaluated
similarly as

- d
P =3 yuy (1),
7=0

however since the algorithmic complexity involved in evaluating derivatives of the Lagrange basis functions in-
creases dramatically as the derivative order grows, our Lagrange interpolation module currently only provides deriva-
tives up to d = 3.

We note that when using this interpolation module, during the first (v — 1) steps of integration we do not have suffi-
cient solution history to construct the full v-degree interpolant. Therefore during these initial steps, we construct the
highest-degree interpolants that are currently available at the moment, achieving the full v-degree interpolant once
these initial steps have completed.

2.3 ARKStep — Additive Runge-Kutta methods

The ARKStep time-stepping module in ARKode is designed for IVPs of the form

M)y =2ty + 1y,  ylto) = o, 2.2)

i.e. the right-hand side function is additively split into two components:
 fE(t,y) contains the “nonstiff” components of the system (this will be integrated using an explicit method);
* fI(t,y) contains the “stiff” components of the system (this will be integrated using an implicit method);
and the left-hand side may include a nonsingular, possibly time-dependent, matrix M (t).

In solving the IVP (2.2), we first consider the corresponding problem in standard form,

g=fEty) + flty),  y(to) = vo, 2.3)

where fE(t,y) = M(t)~! fE(t,y) and f(t,y) = M(¢)~" f1(t,y). ARKStep then utilizes variable-step, embed-
ded, additive Runge-Kutta methods (ARK), corresponding to algorithms of the form
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i—1 i
2 = Yn—1 + hn ZAf]fE(tg,g7 ZJ) + hn ZAZ'I,ij(trIL,j7 zj)v i = 17 R
j=1 j=1
U = Y1+l 3 (VEFE(E ) + 6L (th ) ) 24)
i=1
i=1

Here 3, are embedded solutions that approximate y(¢,,) and are used for error estimation; these typically have
slightly lower accuracy than the computed solutions y,,. The internal stage times are abbreviated using the notation
th. = tn1+ cFhyandt], ; = t,_1 + c}hy. The ARK method is primarily defined through the coefficients

AE ¢ Roxs AT ¢ Rs*s pF ¢ R5, b1 € R%, ¢F € R% and ¢! € R?, that correspond with the explicit and implicit
Butcher tables. Additional coefficients b7 € R® and b’ € R are used to construct the embedding ¢,,. We note that
ARKStep currently enforces the constraint that the explicit and implicit methods in an ARK pair must share the same
number of stages, s. We note that when the problem has a time-independent mass matrix M, ARKStep allows the
possibility for different explicit and implicit abcissae, i.e. ¢ need not equal ¢’.

The user of ARKStep must choose appropriately between one of three classes of methods: ImEXx, explicit, and im-
plicit. All of the built-in Butcher tables encoding the coefficients c”, ¢!, A¥, AT, b, b!, b¥ and b’ are further de-
scribed in the Appendix: Butcher tables.

For mixed stiff/nonstiff problems, a user should provide both of the functions f¥ and f that define the IVP system.
For such problems, ARKStep currently implements the ARK methods proposed in /[KC2003], allowing for methods
having order of accuracy ¢ = {3, 4, 5}; the tables for these methods are given in the section Additive Butcher tables.
Additionally, user-defined ARK tables are supported.

For nonstiff problems, a user may specify that f/ = 0, i.e. the equation (2.2) reduces to the non-split IVP

M)y = f"ty),  y(to) = o 2.5)

In this scenario, the coefficients AT = 0, ¢! = 0, ' = 0 and bl = 0in (2.4), and the ARK methods reduce to clas-
sical explicit Runge-Kutta methods (ERK). For these classes of methods, ARKode provides coefficients with orders
of accuracy ¢ = {2, 3,4, 5, 6,8}, with embeddings of orders p = {1,2, 3,4, 5, 7}. These default to the Heun-Euler-
2-1-2, Bogacki-Shampine-4-2-3, Zonneveld-5-3-4, Cash-Karp-6-4-5, Verner-8-5-6 and Fehlberg-13-7-8 methods,
respectively. As with ARK methods, user-defined ERK tables are supported.

Alternately, for stiff problems the user may specify that f¥ = 0, so the equation (2.2) reduces to the non-split IVP

M)y =f'(ty),  yto)=yo. (2.6)

Similarly to ERK methods, in this scenario the coefficients AF = 0,cF = 0,bF = 0and bE = 0in (2.4), and
the ARK methods reduce to classical diagonally-implicit Runge-Kutta methods (DIRK). For these classes of meth-
ods, ARKode provides tables with orders of accuracy ¢ = {2, 3,4, 5}, with embeddings of orders p = {1,2,3,4}.
These default to the SDIRK-2-1-2, ARK-4-2-3 (implicit), SDIRK-5-3-4 and ARK-8-4-5 (implicit) methods, respec-
tively. Again, user-defined DIRK tables are supported.

2.4 ERKStep — Explicit Runge-Kutta methods

The ERKStep time-stepping module in ARKode is designed for IVP of the form
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=11y,  ylto) = o, 2.7)
i.e., unlike the more general problem form (2.2), ERKStep requires that problems have an identity mass matrix (i.e.,

M (t) = I) and that the right-hand side function is not split into separate components.

For such problems, ERKStep provides variable-step, embedded, explicit Runge-Kutta methods (ERK), correspond-
ing to algorithms of the form

i—1

Zi :yn,—l+h7LZAi,jf(tn,jazj)7 L = 1,...,57

j=1

Yn = Yn—1+hn Z bif(tn,ia Zi)7 (2.8)

i=1
S
gn = Yn—1 + hn Z bzf(tn,za Zi)7
i=1
where the variables have the same meanings as in the previous section.

Clearly, the problem (2.7) is fully encapsulated in the more general problem (2.5), and the algorithm (2.8) is simi-
larly encapsulated in the more general algorithm (2.4). While it therefore follows that ARKStep can be used to solve
every problem solvable by ERKStep, using the same set of methods, we include ERKStep as a distinct time-stepping
module since this simplified form admits a more efficient and memory-friendly solution process than when consider-
ing the more general form (2.7).

2.5 MRIStep — Multirate infinitesimal step methods

The MRIStep time-stepping module in ARKode is designed for IVPs of the form

i.e. the right-hand side function is additively split into two components:
s f5(t,y) contains the “slow” components of the system (this will be integrated using a large time step h*),

 fF(t,y) contains the “fast” components of the system (this will be integrated using small time steps hf" <
h9).

As with ERKStep, MRIStep currently requires that problems be posed with an identity mass matrix, M (t) = I.

For such problems, MRIStep provides fixed-step slow step multirate infinitesimal step and multirate infinitesimal
GARK methods (see [SKAW2009], [SKAW2012a], [SKAW2012b], and [S2019]) that combine two Runge-Kutta
methods. The outer (slow) method derives from an s stage Runge-Kutta method where the stage values and the new
solution are computed by solving an auxiliary ODE with an inner (fast) Runge-Kutta method. This corresponds to
the following algorithm for a single step:

1. Setz1 = yn—1
2. Fort=2,...,5s+1

(@) Letv(0) = zi—1,t5 ;_y =tn_1+ ¢ 1h% and Ac] = (¢ — ¢ ).

(b) Letr(r) = Ji:l vig (T/05) £S5 5, %)
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(¢c) For 7 € [0,h%], solve o(7) = Acf fF(t ;) + AcP,v) +7(7)
(d) Set z; = v(h°),
3. Sety, = zs41-

where ¢ 1 = 1 and the coefficients ;,; are polynomials in time that dictate the couplings from the slow to the fast
time scale; these can be expressed as in [S2079]:

723 (0) = > Ak, 2.10)
k>0
and where the tables I't*} ¢ R(s+1)x(s+1) define the slow-to-fast coupling. For traditional MIS methods (as in
[SKAW2009], [SKAW2012a], and [SKAW2012b]), these coefficients are uniquely defined based on a slow Butcher
table (AS7 bS, cs) having explicit first stage (i.e., cf = 0Oand Als’j = 0forl < j < s), sorted abcissae (i.e.,
c? > ¢ | for2 <i < s),and final abcissa c7 < 1 as:

0, ifi=1,
'Yi{,(J)'} = Azs,j - Azsﬂ,j» if2 <i<s, (2.11)
by — AJ, ifi=s+1.

For general slow tables (A°, b, ¢%) with at least second-order accuracy, the corresponding MIS method will be sec-
ond order. However, if this slow table is at least third order and satisfies the additional condition

- 1 1
Z (c;q — cf_l) (e; +e¢_1)T A% + (1- cf) (2 + eZAScS> =3 (2.12)
i=2

where e; corresponds to the j-th column from the identity matrix, then the overall MIS method will be third order.

As with standard Runge—Kutta methods, implicitness at the slow time scale is characterized by nonzero values on or
above the diagonal of the matrices I'1*}, Typically, MRI methods are at most diagonally-implicit (i.e., %{f;} = 0 for

all j > 4). Additionally, an implicit stage i may be characterized as being “solve-decoupled,” wherein ¢; — ¢ | =
and thus the ‘fast’ IVP for v over 7 € [0, 2°] may be solved analytically,
hS
2 = Zi1 +/ r(r)dr
0
= (2.13)
i ,Y{]?}
— s i S4S .
Zi—Zi71+h Z m f (tn,j7ZJ)’
j=1 \k>0

corresponding to a standard diagonally-implicit Runge—Kutta stage. Alternately, an implicit MRI stage ¢ is consid-
{k}
ered “solve-coupled” if both CZ-S - cil # 0and ) k%l # 0, in which case the stage solution z; is both an input
k>0
to r(7) and the result of time-evolution of the fast IVP, necessitating an implicit solve that is coupled to the ‘fast’
solver.

The default method supported by the MRIStep module is the explicit, third-order MIS method defined by the slow
Butcher table (Knoth-Wolke-3-3); however, other slow Butcher tables (AS b8 ) or coupling tables i e
R+1x(5+1) may be provided. At present, only ‘solve-decoupled’ implicit MRI methods are supported.

At present, the inner ODEs for step 2c of the MRI algorithm must be solved using the ARKStep module. As such,
this can be evolved using either an explicit, implicit, or IMEX method with adaptive or fixed time steps.
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2.6 Error norms

In the process of controlling errors at various levels (time integration, nonlinear solution, linear solution), the meth-
ods in ARKode use a weighted root-mean-square norm, denoted || - |[wrwms, for all error-like quantities,

1 N 1/2
[ollwrms = <NZ(Ui wi)2> . (2.14)

i=1

The utility of this norm arises in the specification of the weighting vector w, that combines the units of the problem
with user-supplied values that specify an “acceptable” level of error. To this end, we construct an error weight vector
using the most-recent step solution and user-supplied relative and absolute tolerances, namely

w; = (RTOL - |y, 15| + ATOL;) ™" (2.15)

Since 1/w); represents a tolerance in the i-th component of the solution vector y, a vector whose WRMS norm is 1
is regarded as “small.” For brevity, unless specified otherwise we will drop the subscript WRMS on norms in the re-
mainder of this section.

Additionally, for problems involving a non-identity mass matrix, M # I, the units of equation (2.2) may differ from
the units of the solution y. In this case, we may additionally construct a residual weight vector,

w; = (RTOL - |(M(tu—1) yur),| + ATOL!) 2.16)

where the user may specify a separate absolute residual tolerance value or array, ATOL’. The choice of weighting
vector used in any given norm is determined by the quantity being measured: values having “solution” units use
(2.15), whereas values having “equation” units use (2.16). Obviously, for problems with M = I, the solution and
equation units are identical, so the solvers in ARKode will use (2.15) when computing all error norms.

2.7 Time step adaptivity

A critical component of IVP “solvers” (rather than just time-steppers) is their adaptive control of local truncation
error (LTE). At every step, we estimate the local error, and ensure that it satisfies tolerance conditions. If this local
error test fails, then the step is recomputed with a reduced step size. To this end, the Runge-Kutta methods packaged
within both the ARKStep and ERKStep modules admit an embedded solution ¥,,, as shown in equations (2.4) and
(2.8). Generally, these embedded solutions attain a slightly lower order of accuracy than the computed solution ¥,,.
Denoting the order of accuracy for v, as ¢ and for ¢,, as p, most of these embedded methods satisfy p = ¢ — 1. These
values of ¢ and p correspond to the global orders of accuracy for the method and embedding, hence each admit local
truncation errors satisfying [HW1993]

lyn = y(ta)ll = CHET + O(hET),

7 2.17)
[Gn — y(tn)ll = DREFT 4+ O(RE?),

where C and D are constants independent of h,,, and where we have assumed exact initial conditions for the step,
i.e. yp—1 = y(tn—1). Combining these estimates, we have

Hyn - gnH = ||yn - y(tn) — Yn + y(tn)” < ”yn - y(tn)H + ||gn - y(tn)” < DhﬁJrl + O(hﬁ+2)'
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We therefore use the norm of the difference between y,, and y,, as an estimate for the LTE at the step n

T, = 80— ) = B 3 [ (4 =B 2z + (81 =) F700020) 2.18)
i=1

for ARK methods, and similarly for ERK methods. Here, 8 > 0 is an error bias to help account for the error constant
D; the default value of this constant is 5 = 1.5, which may be modified by the user.

With this LTE estimate, the local error test is simply ||7},|| < 1 since this norm includes the user-specified toler-
ances. If this error test passes, the step is considered successful, and the estimate is subsequently used to estimate the
next step size, the algorithms used for this purpose are described below in the section Asymptotic error control. If the
error test fails, the step is rejected and a new step size h’ is then computed using the same error controller as for suc-
cessful steps. A new attempt at the step is made, and the error test is repeated. If the error test fails twice, then h'/h
is limited above to 0.3, and limited below to 0.1 after an additional step failure. After seven error test failures, con-
trol is returned to the user with a failure message. We note that all of the constants listed above are only the default
values; each may be modified by the user.

We define the step size ratio between a prospective step 4’ and a completed step h as 7, i.e. = h’/h. This value is
subsequently bounded from above by 7.« to ensure that step size adjustments are not overly aggressive. This upper
bound changes according to the step and history,

etamxl1, on the first step (default is 10000),
Nmax = { growth, on general steps (default is 20),

1, if the previous step had an error test failure.

A flowchart detailing how the time steps are modified at each iteration to ensure solver convergence and successful
steps is given in the figure below. Here, all norms correspond to the WRMS norm, and the error adaptivity function
arkAdapt is supplied by one of the error control algorithms discussed in the subsections below.

For some problems it may be preferable to avoid small step size adjustments. This can be especially true for prob-
lems that construct a Newton Jacobian matrix or a preconditioner for a nonlinear or an iterative linear solve, where
this construction is computationally expensive, and where convergence can be seriously hindered through use of an
inaccurate matrix. To accommodate these scenarios, the step is left unchanged when 1 € [y, ny]. The default values
for this interval are ;, = 1 and ny = 1.5, and may be modified by the user.

We note that any choices for i (or equivalently, h’) are subsequently constrained by the optional user-supplied
bounds A, and ... Additionally, the time-stepping algorithms in ARKode may similarly limit 2’ to adhere to a
user-provided “TSTOP” stopping point, #p.

2.7.1 Asymptotic error control

As mentioned above, the time-stepping modules in ARKode adapt the step size in order to attain local errors within
desired tolerances of the true solution. These adaptivity algorithms estimate the prospective step size h’ based on the
asymptotic local error estimates (2.17). We define the values ¢,,, €,—1 and €,,_2 as

e = Tkl = Bllyr — grll;

corresponding to the local error estimates for three consecutive steps, t,,—3 — t,—2 — t,—1 — t,. These local
error history values are all initialized to 1 upon program initialization, to accommodate the few initial time steps of a
calculation where some of these error estimates have not yet been computed. With these estimates, ARKode supports
a variety of error control algorithms, as specified in the subsections below.
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hO supplied?

yes \no

compute hO to
approximately solve

1h0"2 y”" [l < 2

L

if (nst==0): h = h0

else: h=h *eta

Y

A

attempt step

A

* etamax = 1
convergence failure? yes .an - an—l.— !
* if (h==hmin or ncf==maxncf): halt
y 0o eta = max(etacf, hmin/h)
estimate error: h=h"*eta
dsm = lly_errorll ctamax = 1
* nef=nef+1
is dsm<1 ? no | if (h==hmin or nef==maxnef): halt
| eta= arkAdapt(h, hl, h2, dsm, el, e2)
if (nef >= small_nef): eta = max(eta, etamxf)
yes h=h *eta
Y
nst=nst+ 1

h2 =hl
hl=h
e2=¢el

el = dsm * bias

if (etamax==1): eta=1
eta = arkAdapt(h, hl, h2, dsm, el, e2)
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2.7.1.1 PID controller

This is the default time adaptivity controller used by the ARKStep and ERKStep modules. It derives from those
found in [KC2003], [S1998], [S2003] and [S2006], and uses all three of the local error estimates ¢,,, £,,—1 and €,,_o
in determination of a prospective step size,

B = h, e k/p 6k2/f 6—1«32/;)
n “n n— n— )

where the constants k1, k2 and k3 default to 0.58, 0.21 and 0.1, respectively, and may be modied by the user. In this
estimate, a floor of £ > 10719 is enforced to avoid division-by-zero errors.

2.7.1.2 PI controller

Like with the previous method, the PI controller derives from those found in /KC2003], [S1998], [S2003 ] and
[S2006], but it differs in that it only uses the two most recent step sizes in its adaptivity algorithm,

r —ky/p _k2/p
h = hye, Enli-

Here, the default values of k; and ko default to 0.8 and 0.31, respectively, though they may be changed by the user.

2.7.1.3 I controller

This is the standard time adaptivity control algorithm in use by most publicly-available ODE solver codes. It bases
the prospective time step estimate entirely off of the current local error estimate,

B = hy, e k1P,

n

By default, k; = 1, but that may be modified by the user.

2.7.1.4 Explicit Gustafsson controller

This step adaptivity algorithm was proposed in /G/991], and is primarily useful with explicit Runge-Kutta methods.
In the notation of our earlier controllers, it has the form

W {h1 51_1/p, on the first step, (2.19)

hy /P (en/sn_l)kz/p , on subsequent steps.

The default values of k1 and k9 are 0.367 and 0.268, respectively, and may be modified by the user.

2.7.1.5 Implicit Gustafsson controller

A version of the above controller suitable for implicit Runge-Kutta methods was introduced in /G994 ], and has the
form

' _ {hlsll/p, on the first step, (2.20)

By (R /hp—1) s;kl/p (&tn/sn,l)*kg/” , on subsequent steps.

The algorithm parameters default to £y = 0.98 and ks = 0.95, but may be modified by the user.
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2.7.1.6 ImEx Gustafsson controller

An ImEx version of these two preceding controllers is also available. This approach computes the estimates h) aris-
ing from equation (2.19) and the estimate A/, arising from equation (2.20), and selects

h
h' = o= min {|hi], |h5|} .
A
Here, equation (2.19) uses k; and ko with default values of 0.367 and 0.268, while equation (2.20) sets both parame-
ters to the input k3 that defaults to 0.95. All of these values may be modified by the user.

2.7.1.7 User-supplied controller
Finally, ARKode’s time-stepping modules allow the user to define their own time step adaptivity function,
h’/ = H(ya t7 h’ru hn—la hn—27 €nsEn—1,En—2, qap)7

to allow for problem-specific choices, or for continued experimentation with temporal error controllers.

2.8 Explicit stability

For problems that involve a nonzero explicit component, i.e. f¥(¢,3) # 0in ARKStep or for any problem in ERK-
Step, explicit and ImEx Runge-Kutta methods may benefit from additional user-supplied information regarding the
explicit stability region. All ARKode adaptivity methods utilize estimates of the local error, and it is often the case
that such local error control will be sufficient for method stability, since unstable steps will typically exceed the error
control tolerances. However, for problems in which £ (¢, y) includes even moderately stiff components, and espe-
cially for higher-order integration methods, it may occur that a significant number of attempted steps will exceed the
error tolerances. While these steps will automatically be recomputed, such trial-and-error can result in an unreason-
able number of failed steps, increasing the cost of the computation. In these scenarios, a stability-based time step
controller may also be useful.

Since the maximum stable explicit step for any method depends on the problem under consideration, in that the value
(hn ) must reside within a bounded stability region, where \ are the eigenvalues of the linearized operator 0 f /9y,
information on the maximum stable step size is not readily available to ARKode’s time-stepping modules. How-
ever, for many problems such information may be easily obtained through analysis of the problem itself, e.g. in an
advection-diffusion calculation f/ may contain the stiff diffusive components and f¥ may contain the compara-

bly nonstiff advection terms. In this scenario, an explicitly stable step h.,, would be predicted as one satisfying the
Courant-Friedrichs-Lewy (CFL) stability condition for the advective portion of the problem,

Az
[hexp| < —
DY

where Az is the spatial mesh size and A is the fastest advective wave speed.

In these scenarios, a user may supply a routine to predict this maximum explicitly stable step size, |hexp|. If a value
for |hexp| is supplied, it is compared against the value resulting from the local error controller, |f,.|, and the eventual
time step used will be limited accordingly,

h .
h/ = mmln{c‘hexpL ‘hacc|}'

Here the explicit stability step factor ¢ > 0 (often called the “CFL number”) defaults to 1/2 but may be modified by
the user.
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2.8.1 Fixed time stepping

While both the ARKStep and ERKStep time-stepping modules are designed for tolerance-based time step adaptiv-
ity, they additionally support a “fixed-step” mode (note: fixed-step mode is currently required for the slow time scale
in the MRIStep module). This mode is typically used for debugging purposes, for verification against hand-coded
Runge-Kutta methods, or for problems where the time steps should be chosen based on other problem-specific infor-
mation. In this mode, all internal time step adaptivity is disabled:

* temporal error control is disabled,
¢ nonlinear or linear solver non-convergence will result in an error (instead of a step size adjustment),
* no check against an explicit stability condition is performed.

Additional information on this mode is provided in the sections ARKStep Optional Inputs, ERKStep Optional Inputs,
and MRIStep Optional Inputs.

2.9 Algebraic solvers

When solving a problem involving either an implicit component (e.g., in ARKStep with f7(¢,y) # 0, or in MRIStep
with a solve-decoupled implicit slow stage), or a non-identity mass matrix (M (¢) # I in ARKStep), systems of
linear or nonlinear algebraic equations must be solved at each stage and/or step of the method. This section therefore
focuses on the variety of mathematical methods provided in the ARKode infrastructure for such problems, including
nonlinear solvers, linear solvers, preconditioners, iterative solver error control, implicit predictors, and techniques
used for simplifying the above solves when using different classes of mass-matrices.

2.9.1 Nonlinear solver methods

For the DIRK and ARK methods corresponding to (2.2) and (2.6) in ARKStep, and the solve-decoupled implicit
slow stages (2.13) in MRIStep, an implicit system

G(z) =0 2.21)

must be solved for each stage z;,7 = 1,...,s. In order to maximize solver efficiency, we define this root-finding
problem differently based on the type of mass-matrix supplied by the user.

* In the case that M = I within ARKStep, we define the residual as

G(z) = 2 — ha AL f1 (4, 21) — i, (2.22)

where we have the data

i—1
a; = Yn—1+hy Z [AfjfE(tE,jv Zj) + Ail,jf[(tr[z,jv ZJ)] .
j=1

* In the case of non-identity mass matrix M # I within ARKStep, but where M is independent of ¢, we define
the residual as

G(zi) = Mz — hy AL f1 (th 5, 2i) — ai, (2.23)

n,i’
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where we have the data

i—1
ai = Myn_1+hn Y [AFFE(E 1, 25) + AL F(th 5. 25)]
j=1

Note: This form of residual, as opposed to G(z;) = z; — hnAI et i»#i) — a; (with a; defined appropri-

ately), removes the need to perform the nonlinear solve with right-hand side function f I'= M~1f7, as that
would require a linear solve with M at every evaluation of the implicit right-hand side routine.

In the case of ARKStep with M dependent on ¢, we define the residual as

G(zi) = M(t] )z — a;) — hy AL f1 (), 4, 1) (2.24)

where we have the data

az—yn1+hn2[ (8 52 2) + AL (0 5,250

Note: As above, this form of the residual is chosen to remove excessive mass-matrix solves from the nonlin-
ear solve process.

* Similarly, in MRIStep (that always assumes M = I), we have the residual

{k}
7"
G(z) = z — h° k+ : It z) —ai =0 (2.25)
k>0
where
{k}
a; = 25 1+hSZ Z ,j fS ,j7zj)

Jj=1 \k=0

In each of the above nonlinear residual functions, if fZ(¢,y) or f°(¢,y) depends nonlinearly on y then (2.21) corre-
sponds to a nonlinear system of equations; if instead f(¢,y) or f°(t,%) depends linearly on y then this is a linear
system of equations.

To solve each of the above root-finding problems ARKode provides a choice of strategies, with the default being a
variant of Newton’s method,

2 = ) ) (2.26)

where m is the Newton iteration index, and the Newton update § (m+1) in turn requires the solution of the Newton
linear system

A (tI 2 ) §m+) — _ (z(m)) 2.27)

n,ir ~
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in which

I
A(t,z) = M(t) —vJ(t,2z), J(t,z2) = w, and v = h,A!, (2.28)
> :
within ARKStep, or
S(¢ {k}
Alt,2) =T —~J(t,z2), J(t,z)= L(’Z), and ~v=h" Jui (2.29)
0z = k+1

within MRIStep.

As an alternative to Newton’s method, ARKode provides a fixed point iteration for solving the stages z;,7 =
1,...,s,

2 = () =2 - Mt )G () m=01,. (2.30)
This iteration may additionally be improved using a technique called “Anderson acceleration” [WN2011]. Unlike
with Newton’s method, these methods do not require the solution of a linear system involving the Jacobian of f at
each iteration, instead opting for solution of a low-dimensional least-squares solution to construct the nonlinear up-
date.

Finally, if the user specifies that f7(t,y) or (¢, y) depend linearly on y in ARKStep or MRIStep, respectively, and
if the Newton-based nonlinear solver is chosen, then the problem (2.21) will be solved using only a single Newton
iteration. In this case, an additional user-supplied argument indicates whether this Jacobian is time-dependent or not,
signaling whether the Jacobian or preconditioner needs to be recomputed at each stage or time step, or if it can be
reused throughout the full simulation.

The optimal choice of solver (Newton vs fixed-point) is highly problem dependent. Since fixed-point solvers do not
require the solution of linear systems involving the Jacobian of f, each iteration may be significantly less costly than
their Newton counterparts. However, this can come at the cost of slower convergence (or even divergence) in com-
parison with Newton-like methods. On the other hand, these fixed-point solvers do allow for user specification of
the Anderson-accelerated subspace size, my. While the required amount of solver memory for acceleration grows
proportionately to my N, larger values of mj may result in faster convergence. In our experience, this improvement
is most significant for relatively modest values, e.g. 1 < my < 5, and that larger values of m; may not result in
improved convergence.

While a Newton-based iteration is the default solver in ARKode due to its increased robustness on very stiff prob-
lems, we strongly recommend that users also consider the fixed-point solver when attempting a new problem.

For either the Newton or fixed-point solvers, it is well-known that both the efficiency and robustness of the algorithm
intimately depend on the choice of a good initial guess. The initial guess for these solvers is a prediction ZZ(O) that is
computed explicitly from previously-computed data (e.g. yn—2, Yn—1, and z; where j < 7). Additional information
on the specific predictor algorithms is provided in the following section, /mplicit predictors.

2.9.2 Linear solver methods

When a Newton-based method is chosen for solving each nonlinear system, a linear system of equations must be
solved at each nonlinear iteration. For this solve ARKode provides several choices, including the option of a user-
supplied linear solver module. The linear solver modules distributed with SUNDIALS are organized into two fam-
ilies: a direct family comprising direct linear solvers for dense, banded or sparse matrices, and a spils family com-
prising scaled, preconditioned, iterative (Krylov) linear solvers. The methods offered through these modules are as
follows:
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* dense direct solvers, using either an internal SUNDIALS implementation or a BLAS/LAPACK implementa-
tion (serial version only),

* band direct solvers, using either an internal SUNDIALS implementation or a BLAS/LAPACK implementation
(serial version only),

* sparse direct solvers, using either the KLU sparse matrix library [KLU], or the OpenMP or PThreads-enabled
SuperLU_MT sparse matrix library [SuperLUMT] [Note that users will need to download and install the KLU
or SuperLU_MT packages independent of ARKode],

* SPGMR, a scaled, preconditioned GMRES (Generalized Minimal Residual) solver,

* SPFGMR, a scaled, preconditioned FGMRES (Flexible Generalized Minimal Residual) solver,

* SPBCGS, a scaled, preconditioned Bi-CGStab (Bi-Conjugate Gradient Stable) solver,

* SPTFQMR, a scaled, preconditioned TFQMR (Transpose-free Quasi-Minimal Residual) solver, or
* PCQG, a preconditioned CG (Conjugate Gradient method) solver for symmetric linear systems.

For large stiff systems where direct methods are often infeasible, the combination of an implicit integrator and a pre-
conditioned Krylov method can yield a powerful tool because it combines established methods for stiff integration,
nonlinear solver iteration, and Krylov (linear) iteration with a problem-specific treatment of the dominant sources of
stiffness, in the form of a user-supplied preconditioner matrix /BH1989]. We note that the direct linear solver mod-
ules currently provided by SUNDIALS are only designed to be used with the serial and threaded vector representa-
tions.

2.9.2.1 Matrix-based linear solvers

In the case that a matrix-based linear solver is used, a modified Newton iteration is utilized. In a modified newton it-
eration, the matrix A is held fixed for multiple Newton iterations. More precisely, each Newton iteration is computed
from the modified equation

A(f2) 6m+D = _@ (z§m>) : 2.31)
in which
A(t,2)~ M(t) —4J(t,2), and 7=hAl, (ARKStep) (2.32)
or
. N I 2
) ~ I _ A 5 N = kel MRI .
A(t, %) FI(£ %), and y=h)_ 7 (MRIStep) (2.33)

k>0

Here, the solution 2, time £, and step size h upon which the modified equation rely, are merely values of these quan-
tities from a previous iteration. In other words, the matrix A is only computed rarely, and reused for repeated solves.
The frequency at which A is recomputed defaults to 20 time steps, but may be modified by the user.

When using the dense and band SUNMatrix objects for the linear systems (2.31), the Jacobian .J may be supplied
by a user routine, or approximated internally by finite-differences. In the case of differencing, we use the standard
approximation

Jis(t ) ~ fi(t 2+ 05e5) — fi (¢, 2)7

9j
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where f* is either f! for ARKStep or f° for MRIStep, e; is the j-th unit vector, and the increments o; are given by
0j = max {\/ﬁ|zj|7 00} .
W

Here U is the unit roundoff, oy is a small dimensionless value, and w; is the error weight defined in (2.15). In the
dense case, this approach requires N evaluations of f*, one for each column of J. In the band case, the columns of
J are computed in groups, using the Curtis-Powell-Reid algorithm, with the number of f* evaluations equal to the
matrix bandwidth.

We note that with sparse and user-supplied SUNMatrix objects, the Jacobian must be supplied by a user routine.

2.9.2.2 Matrix-free iterative linear solvers

In the case that a matrix-free iterative linear solver is chosen, an inexact Newton iteration is utilized. Here, the matrix
A is not itself constructed since the algorithms only require the product of this matrix with a given vector. Addition-

ally, each Newton system (2.27) is not solved completely, since these linear solvers are iterative (hence the “inexact”

in the name). As a result. for these linear solvers A is applied in a matrix-free manner,

A(t,z)v=M(t)v—vJ(t z)v.

The mass matrix-vector products Mv must be provided through a user-supplied routine; the Jacobian matrix-vector
products Jv are obtained by either calling an optional user-supplied routine, or through a finite difference approxi-
mation to the directional derivative:

[tz 4+ ov) — f*(t, 2)

t ~
J(t.2)0 - ,

where again f* is either f! for ARKStep or f* for MRIStep, and we use the increment ¢ = 1/||v]| to ensure that
[lov|| = 1.

As with the modified Newton method that reused A between solves, the inexact Newton iteration may also recom-
pute the preconditioner P infrequently to balance the high costs of matrix construction and factorization against the
reduced convergence rate that may result from a stale preconditioner.

2.9.2.3 Updating the linear solver

In cases where recomputation of the Newton matrix Aor preconditioner P is lagged, these structures will be recom-
puted only in the following circumstances:

* when starting the problem,

* when more than 20 steps have been taken since the last update (this value may be modified by the user),
 when the value 7 of 7 at the last update satisfies |y/5 — 1| > 0.2 (this value may be modified by the user),
* when a non-fatal convergence failure just occurred,

e when an error test failure just occurred, or

« if the problem is linearly implicit and ~y has changed by a factor larger than 100 times machine epsilon.

When an update is forced due to a convergence failure, an update of Aor P may or may not involve a re-evaluation
of J (in A) or of Jacobian data (in P), depending on whether errors in the Jacobian were the likely cause of the fail-
ure. More generally, the decision is made to re-evaluate J (or instruct the user to update P) when:

e starting the problem,

» more than 50 steps have been taken since the last evaluation,
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* aconvergence failure occurred with an outdated matrix, and the value 7 of +y at the last update satisfies
/311> 02,

* aconvergence failure occurred that forced a step size reduction, or
« if the problem is linearly implicit and ~ has changed by a factor larger than 100 times machine epsilon.

However, for linear solvers and preconditioners that do not rely on costly matrix construction and factorization op-

erations (e.g. when using a geometric multigrid method as preconditioner), it may be more efficient to update these
structures more frequently than the above heuristics specify, since the increased rate of linear/nonlinear solver con-

vergence may more than account for the additional cost of Jacobian/preconditioner construction. To this end, a user
may specify that the system matrix .A and/or preconditioner P should be recomputed more frequently.

As will be further discussed in the section Preconditioning, in the case of most Krylov methods, preconditioning may
be applied on the left, right, or on both sides of A, with user-supplied routines for the preconditioner setup and solve
operations.

2.9.3 Iteration Error Control

2.9.3.1 Nonlinear iteration error control

The stopping test for all of the nonlinear solver algorithms is related to the temporal local error test, with the goal of

keeping the nonlinear iteration errors from interfering with local error control. Denoting the final computed value of
(m)

%

each stage solution as z
(m)

)

, and the true stage solution solving (2.21) as z;, we want to ensure that the iteration error

Zi — 2 is “small” (recall that a norm less than 1 is already considered within an acceptable tolerance).

To this end, we first estimate the linear convergence rate R; of the nonlinear iteration. We initialize R; = 1, and reset

it to this value whenever A or P are updated. After computing a nonlinear correction §(™) = qum) — zi(m_l) , if

m > 0 we update R; as

R; + max {O.BRi,

T S

where the factor 0.3 is user-modifiable.
Let y,(lm) denote the time-evolved solution constructed using our approximate nonlinear stage solutions, z

y%oo) denote the time-evolved solution constructed using exact nonlinear stage solutions. We then use the estimate

(m)

i

, and let

HyT(Loo) _ yr(Lm)H ~ max Hzi(m—t-l) _ ZfM)H ~ max R;

zi(m) — zi(m_l)H = max R; H(S(W)H .

Therefore our convergence (stopping) test for the nonlinear iteration for each stage is

R Hé“’”H <e (2.34)

where the factor € has default value 0.1. We default to a maximum of 3 nonlinear iterations. We also declare the non-
linear iteration to be divergent if any of the ratios [|§(™||/||6(™~1)|| > 2.3 with m > 0. If convergence fails in the
fixed point iteration, or in the Newton iteration with J or A current, we reduce the step size h,, by a factor of 0.25.
The integration will be halted after 10 convergence failures, or if a convergence failure occurs with h,, = hpi,. How-
ever, since the nonlinearity of (2.21) may vary significantly based on the problem under consideration, these default
constants may all be modified by the user.

2.9.3.2 Linear iteration error control

When a Krylov method is used to solve the linear Newton systems (2.27), its errors must also be controlled. To this
end, we approximate the linear iteration error in the solution vector 6™ using the preconditioned residual vector,
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e.g. 7 = PAS™ 4 PG for the case of left preconditioning (the role of the preconditioner is further elaborated in the
next section). In an attempt to ensure that the linear iteration errors do not interfere with the nonlinear solution error
and local time integration error controls, we require that the norm of the preconditioned linear residual satisfies

€L €
< —. 2.
Il < <& (235)
Here € is the same value as that is used above for the nonlinear error control. The factor of 10 is used to ensure that
the linear solver error does not adversely affect the nonlinear solver convergence. Smaller values for the parameter
ez, are typically useful for strongly nonlinear or very stiff ODE systems, while easier ODE systems may benefit from
a value closer to 1. The default value is e;, = 0.05, which may be modified by the user. We note that for linearly

implicit problems the tolerance (2.35) is similarly used for the single Newton iteration.

2.9.4 Preconditioning

When using an inexact Newton method to solve the nonlinear system (2.21), an iterative method is used repeatedly
to solve linear systems of the form .Ax = b, where z is a correction vector and b is a residual vector. If this iterative
method is one of the scaled preconditioned iterative linear solvers supplied with SUNDIALS, their efficiency may
benefit tremendously from preconditioning. A system Az = b can be preconditioned using any one of:

(P! Az =P [left preconditioning],
(AP YPxz =1 [right preconditioning],
(Pp 1AP§ YPrax = Pr 1y [left and right preconditioning].

These Krylov iterative methods are then applied to a system with the matrix P~'A, AP, or P AP, instead of
A. In order to improve the convergence of the Krylov iteration, the preconditioner matrix P, or the product Py, Pr in
the third case, should in some sense approximate the system matrix .4. Simultaneously, in order to be cost-effective
the matrix P (or matrices P, and Pgr) should be reasonably efficient to evaluate and solve. Finding an optimal point
in this trade-off between rapid convergence and low cost can be quite challenging. Good choices are often problem-
dependent (for example, see [BH1989] for an extensive study of preconditioners for reaction-transport systems).

Most of the iterative linear solvers supplied with SUNDIALS allow for all three types of preconditioning (left, right
or both), although for non-symmetric matrices .4 we know of few situations where preconditioning on both sides is
superior to preconditioning on one side only (with the product P = P, Pr). Moreover, for a given preconditioner
matrix, the merits of left vs. right preconditioning are unclear in general, so we recommend that the user experiment
with both choices. Performance can differ between these since the inverse of the left preconditioner is included in the
linear system residual whose norm is being tested in the Krylov algorithm. As a rule, however, if the preconditioner
is the product of two matrices, we recommend that preconditioning be done either on the left only or the right only,
rather than using one factor on each side. An exception to this rule is the PCG solver, that itself assumes a symmetric
matrix A, since the PCG algorithm in fact applies the single preconditioner matrix P in both left/right fashion as
P_I/Q.AP_I/2.

Typical preconditioners are based on approximations to the system Jacobian, J = df!/0y. Since the Newton itera-
tion matrix involved is A = M — ~.J, any approximation .J to .J yields a matrix that is of potential use as a precondi-
tioner, namely P = M — ~.J. Because the Krylov iteration occurs within a Newton iteration and further also within
a time integration, and since each of these iterations has its own test for convergence, the preconditioner may use a
very crude approximation, as long as it captures the dominant numerical features of the system. We have found that
the combination of a preconditioner with the Newton-Krylov iteration, using even a relatively poor approximation

to the Jacobian, can be surprisingly superior to using the same matrix without Krylov acceleration (i.e., a modified
Newton iteration), as well as to using the Newton-Krylov method with no preconditioning.
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2.9.5 Implicit predictors

For problems with implicit components, a prediction algorithm is employed for constructing the initial guesses
for each implicit Runge-Kutta stage, z§°>. As is well-known with nonlinear solvers, the selection of a good initial
guess can have dramatic effects on both the speed and robustness of the solve, making the difference between rapid
quadratic convergence versus divergence of the iteration. To this end, a variety of prediction algorithms are provided.
In each case, the stage guesses z( ) are constructed explicitly using readily-available information, including the pre-
vious step solutions y,,—1 and ¥, _2, as well as any previous stage solutions z;, j < 7. In most cases, prediction

is performed by constructing an interpolating polynomial through existing data, which is then evaluated at the de-
sired stage time to provide an inexpensive but (hopefully) reasonable prediction of the stage solution. Specifically,
for most Runge-Kutta methods each stage solution satisfies

~ y(ti,i)»

(similarly for MRI methods z; =~ y(tsyi)), so by constructing an interpolating polynomial p,(t) through a set of
existing data, the initial guess at stage solutions may be approximated as

2® = p (i), (2.36)

As the stage times for MRI stages and implicit ARK and DIRK stages usually have non-negative abcissae (i.e., cl >
0), it is typically the case that t£ . ; (resp., t ) is outside of the time interval containing the data used to construct
pq(t), hence (2.36) will correspond to an extrapolant instead of an interpolant. The dangers of using a polynomial
interpolant to extrapolate values outside the interpolation interval are well-known, with higher-order polynomials and
predictions further outside the interval resulting in the greatest potential inaccuracies.

The prediction algorithms available in ARKode therefore construct a variety of interpolants p,(t), having different
polynomial order and using different interpolation data, to support ‘optimal’ choices for different types of problems,
as described below. We note that due to the structural similarities between implicit ARK and DIRK stages in ARK-
Step, and solve-decoupled implicit stages in MRIStep, we use the ARKStep notation throughout the remainder of
this section, but each statement equally applies to MRIStep (unless otherwise noted).

2.9.5.1 Trivial predictor
The so-called “trivial predictor” is given by the formula

pO(t) = Yn—1-

While this piecewise-constant interpolant is clearly not a highly accurate candidate for problems with time-varying
solutions, it is often the most robust approach for highly stiff problems, or for problems with implicit constraints
whose violation may cause illegal solution values (e.g. a negative density or temperature).

2.9.5.2 Maximum order predictor

At the opposite end of the spectrum, ARKode’s interpolation module can be used to construct a higher-order poly-
nomial interpolant, p,(t). The implicit stage predictor is computed through evaulating this interpolant at each stage
time ¢! ..

2.9.5.3 Variable order predictor

This predictor attempts to use higher-order polynomials p,(t) for predicting earlier stages, and lower-order inter-
polants for later stages. It uses the same interpolation module as described above, but chooses the polynomial de-
gree adaptively based on the stage index ¢, under the assumption that the stage times are increasing, i.e. ch- < ci for
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7 <k:

gi =max{qmax —t+1, 1}, i=1,...,s.

2.9.5.4 Cutoff order predictor

This predictor follows a similar idea as the previous algorithm, but monitors the actual stage times to determine the

hon,
polynomial interpolant to use for prediction. Denoting 7 = ¢/ —"— N , the polynomial degree g; is chosen as:
n—1
: 1
¢ = Qmax if 7< 2
' 1, otherwise.

2.9.5.5 Bootstrap predictor ()M = I only)

This predictor does not use any information from the preceding step, instead using information only within the cur-
rent step [t,—1, t,,]. In addition to using the solution and ODE right-hand side function, y,,—1 and f(t,—1, yn—1), this
approach uses the right-hand side from a previously computed stage solution in the same step, f(t,—1 + c§ h, z;) to
construct a quadratic Hermite interpolant for the prediction. If we define the constants h = c§ hand T = c!h, the
predictor is given by

2 = +<T2)f(t )+f2f(t +h, 2)
n— = n—1, Yn— = n— y <5
Yt 2h bt 2h ! !

For stages without a nonzero preceding stage time, i.e. C]I» # 0forj < i, this method reduces to using the trivial

predictor z( ) = = y,—1. For stages having multiple preceding nonzero c§ ,

to minimize the level of extrapolation used in the prediction.

: T
we choose the stage having largest c; value,

We note that in general, each stage solution z; has significantly worse accuracy than the time step solutions ¥, _1,
due to the difference between the stage order and the method order in Runge-Kutta methods. As a result, the accu-
racy of this predictor will generally be rather limited, but it is provided for problems in which this increased stage
error is better than the effects of extrapolation far outside of the previous time step interval [t,,—o, t,—1].

Although this approach could be used with non-identity mass matrix, support for that mode is not currently imple-
mented, so selection of this predictor in the case of a non-identity mass matrix will result in use of the trivial predic-
tor.

2.9.5.6 Minimum correction predictor (ARKStep, M = I only)

The final predictor is not interpolation based; instead it utilizes all existing stage information from the current step
to create a predictor containing all but the current stage solution. Specifically, as discussed in equations (2.4) and
(2.21), each stage solves a nonlinear equation

i—1
Zi:yn—l“i’hnZAiFj‘jfE n]? +h ZA 71]5 )
j=1

G(z) =z — hnAI S

nl, )—G,Z:O
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This prediction method merely computes the predictor z; as

i—1 1—1
%= Yot +ho D AE IR )+ ha Y AL S 2p),
j=1

Jj=1

Z; = Q.

Again, although this approach could be used with non-identity mass matrix, support for that mode is not currently
implemented, so selection of this predictor in the case of a non-identity mass matrix will result in use of the trivial
predictor.

2.9.6 Mass matrix solver (ARKStep only)

Within the ARKStep algorithms described above, there are multiple locations where a matrix-vector product

b= Mo (2.37)

or a linear solve

=M1 (2.38)

is required.

Of course, for problems in which M = I both of these operators are trivial. However for problems with non-identity
mass matrix, these linear solves (2.38) may be handled using any valid linear solver module, in the same manner as
described in the section Linear solver methods for solving the linear Newton systems.

For ERK methods involving non-identity mass matrix, even though calculation of individual stages does not require
an algebraic solve, both of the above operations (matrix-vector product, and mass matrix solve) may be required
within each time step. Therefore, for these users we recommend reading the rest of this section as it pertains to ARK
methods, with the obvious simplification that since f¥ = f and f/ = 0 no Newton or fixed-point nonlinear solve,
and no overall system linear solve, is involved in the solution process.

At present, for DIRK and ARK problems using a matrix-based solver for the Newton nonlinear iterations, the type of
matrix (dense, band, sparse, or custom) for the Jacobian matrix J must match the type of mass matrix M, since these
are combined to form the Newton system matrix A. When matrix-based methods are employed, the user must supply
a routine to compute M (t) in the appropriate form to match the structure of A, with a user-supplied routine of type
ARKLsMassFn (). This matrix structure is used internally to perform any requisite mass matrix-vector products
(2.37).

When matrix-free methods are selected, a routine must be supplied to perform the mass-matrix-vector product, Mv.
As with iterative solvers for the Newton systems, preconditioning may be applied to aid in solution of the mass ma-
trix systems (2.38). When using an iterative mass matrix linear solver, we require that the norm of the preconditioned
linear residual satisfies

7]l < ere, (2.39)

where again, € is the nonlinear solver tolerance parameter from (2.34). When using iterative system and mass matrix
linear solvers, €7, may be specified separately for both tolerances (2.35) and (2.39).

In the above algorithmic description there are five locations where a linear solve of the form (2.38) is requiregl: (a)
at each iteration of a fixed-point nonlinear solve, (b) in computing the Runge—Kutta right-hand side vectors f£ and
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l] , (c) in constructing the time-evolved solution y,,, (d) in estimating the local temporal truncation error, and (e) in
constructing predictors for the implicit solver iteration (see section Maximum order predictor). We note that different
nonlinear solver approaches (i.e., Newton vs fixed-point) and different types of mass matrices (i.e., time-dependent
versus fixed) result in different subsets of the above operations. We discuss each of these in the bullets below.

* When using a fixed-point nonlinear solver, at each fixed-point iteration we must solve

Mt )" =G (A™), m=0.1,.

7

for the new fixed-point iterate, z(m+1)

* In the case of a time-dependent mass matrix, to construct the Runge—Kutta right-hand side vectors we must
solve

M) fF = [t =) and M) f] = [1(t.%)
for the vectors fZ and f.

* For fixed mass matrices, we construct the time-evolved solution ¥,, from equation (2.4) by solving

My, = My 1+ hy Z (bF 2t 5 2) + ] f1 (8 50 20))

=1

S

M(Yn = yn-1) = hnz (BF fE(E 5 2i) + 0] f1(Eh 5 20))

S

= Dy (BF Pt 5 20) + 0 (0 20))
=1

for the update v = y,, — Yp—1.

Similarly, we compute the local temporal error estimate 7;, from equation (2.18) by solving systems of the
form

S

MTn:hZ[(bE bE) FE(E 2) + (bf—bf)f (m,z)}. (2.40)

i=1

* For problems with either form of non-identity mass matrix, in constructing dense output and implicit predic-
tors of order 2 or higher (see the section Maximum order predictor above), we compute the derivative informa-
tion fj from the equation

M(tn)fn = fE(tnyyn) + fI(tn; yn)

In total, for problems with time-independent mass matrix, we require only two mass-matrix linear solves (2.38) per
attempted time step, with one more upon completion of a time step that meets the solution accuracy requirements.
When fixed time-stepping is used (h,, = h), the solve (2.40) is not performed at each attempted step.

Similarly, for problems with time-dependent mass matrix, we require 2s mass-matrix linear solves (2.38) per at-
tempted step, where s is the number of stages in the ARK method (only half of these are required for purely explicit
or purely implicit problems, (2.5) or (2.6)), with one more upon completion of a time step that meets the solution
accuracy requirements.

In addition to the above totals, when using a fixed-point nonlinear solver (assumed to require m iterations), we will
need an additional ms mass-matrix linear solves (2.38) per attempted time step (but zero linear solves with the sys-
tem Jacobian).

2.9. Algebraic solvers 43



User Documentation for ARKode, v4.6.1

2.10 Rootfinding

All of the time-stepping modules in ARKode also support a rootfinding feature. This means that, while integrating
the IVP (2.1), these can also find the roots of a set of user-defined functions g; (¢, y) that depend on ¢ and the solution
vector y = y(t). The number of these root functions is arbitrary, and if more than one g; is found to have a root in
any given interval, the various root locations are found and reported in the order that they occur on the ¢ axis, in the
direction of integration.

Generally, this rootfinding feature finds only roots of odd multiplicity, corresponding to changes in sign of
9i(t,y(t)), denoted g;(t) for short. If a user root function has a root of even multiplicity (no sign change), it will
almost certainly be missed due to the realities of floating-point arithmetic. If such a root is desired, the user should
reformulate the root function so that it changes sign at the desired root.

The basic scheme used is to check for sign changes of any g;(t) over each time step taken, and then (when a sign
change is found) to home in on the root (or roots) with a modified secant method /HS7980]. In addition, each time g
is evaluated, ARKode checks to see if g;(¢t) = 0 exactly, and if so it reports this as a root. However, if an exact zero
of any g; is found at a point ¢, ARKode computes g(¢ + ) for a small increment J, slightly further in the direction of
integration, and if any ¢, (¢ + ) = 0 also, ARKode stops and reports an error. This way, each time ARKode takes

a time step, it is guaranteed that the values of all g; are nonzero at some past value of ¢, beyond which a search for
roots is to be done.

At any given time in the course of the time-stepping, after suitable checking and adjusting has been done, ARKode
has an interval (¢, tp;] in which roots of the g;() are to be sought, such that ¢p; is further ahead in the direction of
integration, and all g;(t,,) # 0. The endpoint ty; is either ¢,,, the end of the time step last taken, or the next requested
output time ¢y if this comes sooner. The endpoint ty, is either ¢,,_1, or the last output time ¢,y (if this occurred
within the last step), or the last root location (if a root was just located within this step), possibly adjusted slightly to-
ward t,, if an exact zero was found. The algorithm checks g(ty;) for zeros, and it checks for sign changes in (¢, ;).
If no sign changes are found, then either a root is reported (if some g;(tni) = 0) or we proceed to the next time inter-
val (starting at ¢y,;). If one or more sign changes were found, then a loop is entered to locate the root to within a rather
tight tolerance, given by

7 =100U (|tn| + |h|) (where U = unit roundoff).

Whenever sign changes are seen in two or more root functions, the one deemed most likely to have its root occur
first is the one with the largest value of |g;(thi)| / |gi(thi) — gi(t10)|, corresponding to the closest to ¢, of the secant
method values. At each pass through the loop, a new value ;4 is set, strictly within the search interval, and the val-
ues of g;(tmia) are checked. Then either ¢}, or tp; is reset to ¢yiq according to which subinterval is found to have the
sign change. If there is none in (¢, tmia) but some g;(tmia) = 0, then that root is reported. The loop continues until
|thi — ti0| < 7, and then the reported root location is ;. In the loop to locate the root of g;(t), the formula for ¢4 is

i (thi) (thi — t1o)

tmid = thi —
™ Y gi(tn) — agi(t)’

where « is a weight parameter. On the first two passes through the loop, « is set to 1, making ¢4 the secant method
value. Thereafter, « is reset according to the side of the subinterval (low vs high, i.e. toward ¢, vs toward £;) in
which the sign change was found in the previous two passes. If the two sides were opposite, « is set to 1. If the two
sides were the same, « is halved (if on the low side) or doubled (if on the high side). The value of t,4 is closer to ¢,
when a < 1 and closer to t,; when o > 1. If the above value of ¢4 is within 7/2 of ¢, or ty;, it is adjusted inward,
such that its fractional distance from the endpoint (relative to the interval size) is between 0.1 and 0.5 (with 0.5 being
the midpoint), and the actual distance from the endpoint is at least 7/2.

Finally, we note that when running in parallel, ARKode’s rootfinding module assumes that the entire set of root
defining functions g; (¢, y) is replicated on every MPI task. Since in these cases the vector y is distributed across
tasks, it is the user’s responsibility to perform any necessary inter-task communication to ensure that g;(¢, y) is iden-
tical on each task.
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2.11 Inequality Constraints

The ARKStep and ERKStep modules in ARKode permit the user to impose optional inequality constraints on indi-
vidual components of the solution vector y. Any of the following four constraints can be imposed: y; > 0, y; < 0,
y; > 0,0ry; < 0. The constraint satisfaction is tested after a successful step and before the error test. If any con-
straint fails, the step size is reduced and a flag is set to update the Jacobian or preconditioner if applicable. Rather
than cutting the step size by some arbitrary factor, ARKode estimates a new step size h’ using a linear approxima-
tion of the components in y that failed the constraint test (including a safety factor of 0.9 to cover the strict inequality
case). If a step fails to satisfy the constraints 10 times (a value which may be modified by the user) within a step at-
tempt or fails with the minimum step size then the integration is halted and an error is returned. In this case the user
may need to employ other strategies as discussed in ARKStep tolerance specification functions and ERKStep toler-
ance specification functions to satisfy the inequality constraints.
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Chapter 3

Code Organization

The family of solvers referred to as SUNDIALS consists of the solvers CVODE and ARKode (for ODE systems),
KINSOL (for nonlinear algebraic systems), and IDA (for differential-algebraic systems). In addition, SUNDIALS
also includes variants of CVODE and IDA with sensitivity analysis capabilities (using either forward or adjoint
methods), called CVODES and IDAS, respectively.

The various solvers of this family share many subordinate modules. For this reason, it is organized as a family, with
a directory structure that exploits that sharing (see the following Figures SUNDIALS organization and SUNDIALS
tree). The following is a list of the solver packages presently available, and the basic functionality of each:

* CVODE, a linear multistep solver for stiff and nonstiff ODE systems ¢ = f(¢,y) based on Adams and BDF
methods;

* CVODES, a linear multistep solver for stiff and nonstiff ODEs with sensitivity analysis capabilities;

* ARKode, a Runge-Kutta based solver for stiff, nonstiff, mixed stiff-nonstiff, and multirate ODE systems;
* IDA, a linear multistep solver for differential-algebraic systems F'(¢,y, ) = 0 based on BDF methods;

* IDAS, a linear multistep solver for differential-algebraic systems with sensitivity analysis capabilities;

» KINSOL, a solver for nonlinear algebraic systems F'(u) = 0.

Note for modules that provide interfaces to third-party libraries (i.e., LAPACK, KLU, SuperLU_MT, Su-
perLU_DIST, hypre, PETSc, Trilinos, and RAJA users will need to download and compile those packages indepen-
dently.

3.1 ARKode organization

The ARKode package is written in the ANSI C language. The following summarizes the basic structure of the pack-
age, although knowledge of this structure is not necessary for its use.

The overall organization of the ARKode package is shown in Figure ARKode organization. The central integra-

tion modules, implemented in the files arkode . h, arkode_impl.h, arkode_butcher.h, arkode.c,
arkode_arkstep.c, arkode_erkstep.c, arkode_mristep.h, and arkode_butcher. c, deal with
the evaluation of integration stages, the nonlinear solvers, estimation of the local truncation error, selection of step
size, and interpolation to user output points, among other issues. ARKode currently supports modified Newton, in-
exact Newton, and accelerated fixed-point solvers for these nonlinearly implicit problems. However, when using the
Newton-based iterations, or when using a non-identity mass matrix M # I, ARKode has flexibility in the choice of
method used to solve the linear sub-systems that arise. Therefore, for any user problem invoking the Newton solvers,
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Fig. 3.1: SUNDIALS organization: High-level diagram of the SUNDIALS structure
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Fig. 3.2: SUNDIALS tree: Directory structure of the source tree.
SUNDIALS
ARKODE
ARKLS: ARKNLS:
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VECTOR MATRIX LINEAR SOLVER NONLINEAR SOLVER
MODULES MODULES MODULES MODULES
\ 4
PRECONDITIONER MODULES

Fig. 3.3: ARKode organization: Overall structure of the ARKode package. Modules specific to ARKode are the
timesteppers (ARKODE)), linear solver interfaces (ARKLS), nonlinear solver interfaces (ARKNLS), and precondi-
tioners (ARKBANDPRE and ARKBBDPRE)); all other items correspond to generic SUNDIALS vector, matrix, and

solver modules.

3.1. ARKode organization
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or any user problem with M # I, one (or more) of the linear system solver modules should be specified by the user,
which is then invoked as needed during the integration process.

For solving these linear systems, ARKode’s linear solver interface supports both direct and iterative linear solvers
built using the generic SUNLINSOL API (see Description of the SUNLinearSolver module). These solvers may uti-
lize a SUNMATRIX object for storing Jacobian information, or they may be matrix-free. Since ARKode can operate
on any valid SUNLINSOL implementation, the set of linear solver modules available to ARKode will expand as new
SUNLINSOL modules are developed.

For users employing dense or banded Jacobians, ARKode includes algorithms for their approximation through differ-
ence quotients, although the user also has the option of supplying a routine to compute the Jacobian (or an approxi-
mation to it) directly. This user-supplied routine is required when using sparse or user-supplied Jacobian matrices.

For users employing iterative linear solvers, ARKode includes an algorithm for the approximation by difference quo-
tients of the product Av. Again, the user has the option of providing routines for this operation, in two phases: setup
(preprocessing of Jacobian data) and multiplication.

When solve problems with non-identity mass matrices, corresponding user-supplied routines for computing either
the mass matrix M or the product Mwv are required. Additionally, the type of linear solver module (iterative, dense-
direct, band-direct, sparse-direct) used for both the IVP system and mass matrix must match.

For preconditioned iterative methods for either the system or mass matrix solves, the preconditioning must be sup-
plied by the user, again in two phases: setup and solve. While there is no default choice of preconditioner analogous
to the difference-quotient approximation in the direct case, the references [BH1989] and [B1992], together with the
example and demonstration programs included with ARKode and CVODE, offer considerable assistance in building
simple preconditioners.

ARKode’s linear solver interface consists of four primary phases, devoted to
1. memory allocation and initialization,
2. setup of the matrix/preconditioner data involved,
3. solution of the system, and
4. freeing of memory.

The setup and solution phases are separate because the evaluation of Jacobians and preconditioners is done only peri-
odically during the integration process, and only as required to achieve convergence.

ARKode also provides two rudimentary preconditioner modules, for use with any of the Krylov iterative lin-

ear solvers. The first, ARKBANDPRE is intended to be used with the serial or threaded vector data structures
(NVECTOR_SERIAL, NVECTOR_OPENMP and NVECTOR_PTHREADS), and provides a banded difference-
quotient approximation to the Jacobian as the preconditioner, with corresponding setup and solve routines. The
second preconditioner module, ARKBBDPRE, is intended to work with the parallel vector data structure, NVEC-
TOR_PARALLEL, and generates a preconditioner that is a block-diagonal matrix with each block being a band ma-
trix owned by a single processor.

All state information used by ARKode to solve a given problem is saved in a single opaque memory structure, and

a pointer to that structure is returned to the user. For C and C++ applications there is no global data in the ARKode
package, and so in this respect it is reentrant. State information specific to the linear solver interface is saved in a
separate data structure, a pointer to which resides in the ARKode memory structure. State information specific to the
linear solver implementation (and matrix implementation, if applicable) are stored in their own data structures, that
are returned to the user upon construction, and subsequently provided to ARKode for use. We note that the ARKode
Fortran interface, however, currently uses global variables, so at most one of each of these objects may be created per
memory space (i.e. one per MPI task in distributed memory computations).
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Chapter 4

Using ARKStep for C and C++ Applications

This chapter is concerned with the use of the ARKStep time-stepping module for the solution of initial value prob-
lems (IVPs) in a C or C++ language setting. The following sections discuss the header files and the layout of the
user’s main program, and provide descriptions of the ARKStep user-callable functions and user-supplied functions.

The example programs described in the companion document [R2078] may be helpful. Those codes may be used as
templates for new codes and are included in the ARKode package examples subdirectory.

Users with applications written in Fortran should see the chapter FARKODE, an Interface Module for FORTRAN
Applications, which describes the Fortran/C interface module for ARKStep, and may look to the Fortran example
programs also described in the companion document /R20/8]. These codes are also located in the ARKode package
examples directory.

The user should be aware that not all SUNLINSOL, SUNMATRIX, and preconditioning modules are compatible
with all NVECTOR implementations. Details on compatibility are given in the documentation for each SUNMA-
TRIX (see Matrix Data Structures) and each SUNLINSOL module (see Description of the SUNLinearSolver mod-
ule). For example, NVECTOR_PARALLEL is not compatible with the dense, banded, or sparse SUNMATRIX
types, or with the corresponding dense, banded, or sparse SUNLINSOL modules. Please check the sections Matrix
Data Structures and Description of the SUNLinearSolver module to verify compatibility between these modules. In
addition to that documentation, we note that the ARKBANDPRE preconditioning module is only compatible with
the NVECTOR_SERIAL, NVECTOR_OPENMP or NVECTOR_PTHREADS vector implementations, and the pre-
conditioner module ARKBBDPRE can only be used with NVECTOR_PARALLEL.

ARKStep uses various input and output constants from the shared ARKode infrastructure. These are defined as
needed in this chapter, but for convenience the full list is provided separately in the section Appendix: ARKode Con-
stants.

The relevant information on using ARKStep’s C and C++ interfaces is detailed in the following sub-sections.

4.1 Access to library and header files

At this point, it is assumed that the installation of ARKode, following the procedure described in the section ARKode
Installation Procedure, has been completed successfully.

Regardless of where the user’s application program resides, its associated compilation and load commands must
make reference to the appropriate locations for the library and header files required by ARKode. The relevant library
files are

e libdir/libsundials_arkode.lib,

e libdir/libsundials_nvecx*.lib,
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where the file extension . 1ib is typically . so for shared libraries and . a for static libraries. The relevant header
files are located in the subdirectories

e incdir/include/arkode

* incdir/include/sundials

* incdir/include/nvector

e incdir/include/sunmatrix

* incdir/include/sunlinsol

* incdir/include/sunnonlinsol

The directories 1 ibdir and incdir are the installation library and include directories, respectively. For a default
installation, these are instdir/lib and instdir/include, respectively, where instdir is the directory
where SUNDIALS was installed (see the section ARKode Installation Procedure for further details).

4.2 Data Types

The sundials_types.h file contains the definition of the variable type realtype, which is used by the SUN-
DIALS solvers for all floating-point data, the definition of the integer type sunindextype, which is used for vec-
tor and matrix indices, and booleantype, which is used for certain logic operations within SUNDIALS.

4.2.1 Floating point types

The type “realtype” can be setto f1oat, double, or long double, depending on how SUNDIALS was in-
stalled (with the default being double). The user can change the precision of the SUNDIALS solvers’ floating-
point arithmetic at the configuration stage (see the section Configuration options (Unix/Linux)).

Additionally, based on the current precision, sundials_types.h defines the values BIG_REAL to be the
largest value representable as a realtype, SMALL_REAL to be the smallest positive value representable as a
realtype, and UNIT_ROUNDOFF to be the smallest realtype number, ¢, such that 1.0 + ¢ # 1.0.

Within SUNDIALS, real constants may be set to have the appropriate precision by way of a macro called RCONST.
It is this macro that needs the ability to branch on the definition realtype. In ANSI C, a floating-point constant
with no suffix is stored as a double. Placing the suffix “F” at the end of a floating point constant makes ita float,
whereas using the suffix “L” makes ita long double. For example,

#define A 1.0
#define B 1.0F
#define C 1.0L

defines A to be a double constant equal to 1.0, B to be a f1oat constant equal to 1.0, and C to be a 1ong
double constant equal to 1.0. The macro call RCONST (1.0) automatically expands to 1.0 if realtype is
double,to 1.0F if realtypeis float,orto 1.0Lif realtypeis long double. SUNDIALS uses the
RCONST macro internally to declare all of its floating-point constants.

Additionally, SUNDIALS defines several macros for common mathematical functions e.g.}, fabs, sqrt, exp, etc.
in sundials_math.h. The macros are prefixed with SUNR and expand to the appropriate C function based on
the realtype. For example, the macro SUNRabs expands to the C function fabs when realtype is double,
fabsf when realtypeis float, and fabsl when realtypeis long double.

A user program which uses the type realtype, the RCONST macro, and the SUNR mathematical function
macros is precision-independent except for any calls to precision-specific library functions. Our example programs
use realtype, RCONST, and the SUNR macros. Users can, however, use the type double, float, or long
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double in their code (assuming that this usage is consistent with the typedef for realtype) and call the appro-
priate math library functions directly. Thus, a previously existing piece of ANSI C code can use SUNDIALS without
modifying the code to use realtype, RCONST, or the SUNR macros so long as the SUNDIALS libraries use the
correct precision (for details see ARKode Installation Procedure).

4.2.2 Integer types used for vector and matrix indices

The type sunindextype can be either a 32- or 64-bit signed integer. The default is the portable int 64_t type,
and the user can change it to int 32_t at the configuration stage. The configuration system will detect if the com-
piler does not support portable types, and will replace int32_t and int64_t with int, long int,or long
long int as appropriate, to ensure use of the desired sizes on Linux, Mac OS X, and Windows platforms. SUNDI-
ALS currently does not support unsigned integer types for vector and matrix indices, although these could be added
in the future if there is sufficient demand.

A user program which uses sunindextype to handle vector and matrix indices will work with both index stor-
age types except for any calls to index storage-specific external libraries. (Our C and C++ example programs use
sunindextype.) Users can, however, use any one of int, long int, int32_t, int64_t or long long
int in their code, assuming that this usage is consistent with the typedef for sunindextype on their architec-
ture. Thus, a previously existing piece of ANSI C code can use SUNDIALS without modifying the code to use
sunindextype, so long as the SUNDIALS libraries use the appropriate index storage type (for details see the sec-
tion ARKode Installation Procedure).

4.3 Header Files

When using ARKStep, the calling program must include several header files so that various macros and data types
can be used. The header file that is always required is:

* arkode/arkode_arkstep.h, the main header file for the ARKStep time-stepping module, which de-
fines the several types and various constants, includes function prototypes, and includes the shared arkode/
arkode.h and arkode/arkode_1s.h header files.

Note that arkode . h includes sundials_types.h directly, which defines the types realtype,
sunindextype and booleantype and the constants SUNFALSE and SUNTRUE, so a user program does not
need to include sundials_types.h directly.

Additionally, the calling program must also include a NVECTOR implementation header file, of the form
nvector/nvector_xx*«.h, corresponding to the user’s preferred data layout and form of parallelism. See
the section Vector Data Structures for details for the appropriate name. This file in turn includes the header file
sundials_nvector.h which defines the abstract N_Vector data type.

If the user wishes to manually select between any of the pre-defined ERK or DIRK Butcher tables, these are de-
fined through a set of constants that are enumerated in the header files arkode/arkode_butcher_erk.h and
arkode/arkode_butcher_dirk.h, or if a user wishes to manually specify one or more Butcher tables, the
corresponding ARKodeButcherTable structure is defined in arkode/arkode_butcher.h.

If the user includes a non-trivial implicit component to their ODE system, then each implicit stage will require a non-
linear solver for the resulting system of algebraic equations — the default for this is a modified or inexact Newton
iteration, depending on the user’s choice of linear solver. If using a non-default nonlinear solver module, or when
interacting with a SUNNONLINSOL module directly, the calling program must also include a SUNNONLINSOL
header file, of the form sunnonlinsol/sunnonlinsol_*x*x*.h where xx« is the name of the nonlinear solver
module (see the section Description of the SUNNonlinearSolver Module for more information). This file in turn in-
cludes the header file sundials_nonlinearsolver.h which defines the abstract SUNNonlinearSolver
data type.
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If using a nonlinear solver that requires the solution of a linear system of the form Az = b (e.g., the default Newton
iteration), then a linear solver module header file will also be required. Similarly, if the ODE system involves a non-
identity mass matrix M # I, then each time step will require a linear solver for systems of the form Mx = b. The
header files corresponding to the SUNDIALS-provided linear solver modules available for use with ARKode are:

¢ Direct linear solvers:

— sunlinsol/sunlinsol_dense.h, which is used with the dense linear solver module, SUNLIN-
SOL_DENSE;

— sunlinsol/sunlinsol_band.h, which is used with the banded linear solver module, SUNLIN-
SOL_BAND;

— sunlinsol/sunlinsol_lapackdense.h, which is used with the LAPACK dense linear solver
module, SUNLINSOL_LAPACKDENSE;

— sunlinsol/sunlinsol_lapackband.h, which is used with the LAPACK banded linear solver
module, SUNLINSOL_LAPACKBAND;

— sunlinsol/sunlinsol_klu.h, which is used with the KLU sparse linear solver module, SUN-
LINSOL_KLU;

— sunlinsol/sunlinsol_superlumt.h, which is used with the SuperLU_MT sparse linear solver
module, SUNLINSOL_SUPERLUMT;

— sunlinsol/sunlinsol_superludist.h, which is used with the SuperLU_DIST parallel sparse
linear solver module, SUNLINSOL_SUPERLUDIST;

— sunlinsol/sunlinsol_cusolversp_batchgr.h, which is used with the batched
sparse QR factorization method provided by the NVDIA cuSOLVER library, SUNLIN-
SOL_CUSOLVERSP_BATCHQR;

e Iterative linear solvers:

— sunlinsol/sunlinsol_spgmr.h, which is used with the scaled, preconditioned GMRES Krylov
linear solver module, SUNLINSOL_SPGMR;

— sunlinsol/sunlinsol_spfgmr.h, which is used with the scaled, preconditioned FGMRES
Krylov linear solver module, SUNLINSOL_SPFGMR;

— sunlinsol/sunlinsol_spbcgs.h, which is used with the scaled, preconditioned Bi-CGStab
Krylov linear solver module, SUNLINSOL_SPBCGS;

— sunlinsol/sunlinsol_sptfqgmr.h, which is used with the scaled, preconditioned TFQMR
Krylov linear solver module, SUNLINSOL_SPTFQMR;

— sunlinsol/sunlinsol_pcg.h, which is used with the scaled, preconditioned CG Krylov linear
solver module, SUNLINSOL_PCG;

The header files for the SUNLINSOL_DENSE and SUNLINSOL_LAPACKDENSE linear solver modules include
the file sunmatrix/sunmatrix_dense.h, which defines the SUNMATRIX_DENSE matrix module, as well
as various functions and macros for acting on such matrices.

The header files for the SUNLINSOL_BAND and SUNLINSOL_LAPACKBAND linear solver modules include
the file sunmatrix/sunmatrix_band.h, which defines the SUNMATRIX_BAND matrix module, as well as
various functions and macros for acting on such matrices.

The header files for the SUNLINSOL_KLU and SUNLINSOL_SUPERLUMT linear solver modules include the
file sunmatrix/sunmatrix_sparse.h, which defines the SUNMATRIX_SPARSE matrix module, as well as
various functions and macros for acting on such matrices.
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The header file for the SUNLINSOL_CUSOLVERSP_BATCHQR linear solver module includes the file
sunmatrix/sunmatrix_cusparse.h, which defines the SUNMATRIX_CUSPARSE matrix module, as well
as various functions for acting on such matrices.

The header file for the SUNLINSOL_SUPERLUDIST linear solver module includes the file sunmatrix/
sunmatrix_slunrloc.h, which defines the SUNMATRIX_ SLUNRLOC matrix module, as well as various
functions for acting on such matrices.

The header files for the Krylov iterative solvers include the file sundials/sundials_iterative.h, which
enumerates the preconditioning type and (for the SPGMR and SPFGMR solvers) the choices for the Gram-Schmidt
orthogonalization process.

Other headers may be needed, according to the choice of preconditioner, etc. For example, if preconditioning for an
iterative linear solver were performed using the ARKBBDPRE module, the header arkode/arkode_bbdpre.h
is needed to access the preconditioner initialization routines.

4.4 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) for the integration of an ODE IVP using
the ARKStep module. Most of the steps are independent of the NVECTOR, SUNMATRIX, SUNLINSOL and SUN-
NONLINSOL implementations used. For the steps that are not, refer to the sections Vector Data Structures, Matrix
Data Structures, Description of the SUNLinearSolver module, and Description of the SUNNonlinearSolver Module
for the specific name of the function to be called or macro to be referenced.

1. Initialize parallel or multi-threaded environment, if appropriate.

For example, call MPI_Init to initialize MPI if used, or set num_threads, the number of threads to use
within the threaded vector functions, if used.

2. Set problem dimensions, etc.

This generally includes the problem size, N, and may include the local vector length N1local.

Note: The variables N and N1ocal should be of type sunindextype.

3. Set vector of initial values

To set the vector yO of initial values, use the appropriate functions defined by the particular NVECTOR imple-
mentation.

For native SUNDIALS vector implementations (except the CUDA and RAJA based ones), use a call of the
form

y0 = N_VMake_x*x (..., ydata);

if the realtype array ydata containing the initial values of y already exists. Otherwise, create a new vector
by making a call of the form

y0 = N_VNew_xx*(...);

and then set its elements by accessing the underlying data where it is located with a call of the form

ydata = N_VGetArrayPointer_ xxx(y0);

See the sections The NVECTOR_SERIAL Module through The NVECTOR_PTHREADS Module for details.
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For the HYPRE and PETSc vector wrappers, first create and initialize the underlying vector, and then create
the NVECTOR wrapper with a call of the form

y0 = N_VMake_xxx (yvec) ;

where yvec is a HYPRE or PETSc vector. Note that calls like N_VNew_ **« (.. .) and
N_VGetArrayPointer_*x« (...) are not available for these vector wrappers. See the sections 7he
NVECTOR_PARHYP Module and The NVECTOR _PETSC Module for details.

If using either the CUDA- or RAJA-based vector implementations use calls to the module-specific routines

y0 = N_VMake_x*%(...);

as applicable. See the sections The NVECTOR_CUDA Module and The NVECTOR_RAJA Module for details.

. Create ARKStep object

Call arkode_mem = ARKStepCreate (...) to create the ARKStep memory block.
ARKStepCreate () returns a voidx pointer to this memory structure. See the section ARKStep initializa-
tion and deallocation functions for details.

. Specify integration tolerances

Call ARKStepSStolerances () or ARKStepSVtolerances () to specify either a scalar relative tol-
erance and scalar absolute tolerance, or a scalar relative tolerance and a vector of absolute tolerances, respec-
tively. Alternatively, call ARKStepWFtolerances () to specify a function which sets directly the weights
used in evaluating WRMS vector norms. See the section ARKStep tolerance specification functions for details.

If a problem with non-identity mass matrix is used, and the solution units differ considerably from
the equation units, absolute tolerances for the equation residuals (nonlinear and linear) may be speci-
fied separately through calls to ARKStepResStolerance (), ARKStepResVtolerance (), or
ARKStepResFtolerance ().

. Create matrix object

If a nonlinear solver requiring a linear solver will be used (e.g., a Newton iteration) and the linear solver will
be a matrix-based linear solver, then a template Jacobian matrix must be created by using the appropriate func-
tions defined by the particular SUNMATRIX implementation.

For the SUNDIALS-supplied SUNMATRIX implementations, the matrix object may be created using a call of
the form

SUNMatrix A = SUNBandMatrix(...);
or

SUNMatrix A = SUNDenseMatrix(...);
or

SUNMatrix A = SUNSparseMatrix(...);

or similarly for the CUDA and SuperLU_DIST matrix modules (see the sections 7he SUNMA-
TRIX_CUSPARSE Module or The SUNMATRIX_SLUNRLOC Module for further information).

Similarly, if the problem involves a non-identity mass matrix, and the mass-matrix linear systems will be
solved using a direct linear solver, then a template mass matrix must be created by using the appropriate func-
tions defined by the particular SUNMATRIX implementation.

NOTE: The dense, banded, and sparse matrix objects are usable only in a serial or threaded environment.
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7. Create linear solver object

If a nonlinear solver requiring a linear solver will be used (e.g., a Newton iteration), or if the problem involves
a non-identity mass matrix, then the desired linear solver object(s) must be created by using the appropriate
functions defined by the particular SUNLINSOL implementation.

For any of the SUNDIALS-supplied SUNLINSOL implementations, the linear solver object may be created
using a call of the form

SUNLinearSolver LS = SUNLinSol_*(...);
where * can be replaced with “Dense”, “SPGMR?”, or other options, as discussed in the sections Linear solver
interface functions and Description of the SUNLinearSolver module.

8. Set linear solver optional inputs

Call »Set » functions from the selected linear solver module to change optional inputs specific to that linear
solver. See the documentation for each SUNLINSOL module in the section Description of the SUNLinear-
Solver module for details.

9. Attach linear solver module

If a linear solver was created above for implicit stage solves, initialize the ARKLS linear solver interface by
attaching the linear solver object (and Jacobian matrix object, if applicable) with the call (for details see the
section Linear solver interface functions):

ier = ARKStepSetLinearSolver(...);

Similarly, if the problem involves a non-identity mass matrix, initialize the ARKLS mass matrix linear solver
interface by attaching the mass linear solver object (and mass matrix object, if applicable) with the call (for
details see the section Linear solver interface functions):

ier = ARKStepSetMassLinearSolver(...);

10. Create nonlinear solver object

If the problem involves an implicit component, and if a non-default nonlinear solver object will be used for
implicit stage solves (see the section Nonlinear solver interface functions), then the desired nonlinear solver
object must be created by using the appropriate functions defined by the particular SUNNONLINSOL imple-
mentation (e.g., NLS = SUNNonlinSol_*xx* (...); where x*« is the name of the nonlinear solver (see
the section Description of the SUNNonlinearSolver Module for details).

For the SUNDIALS-supplied SUNNONLINSOL implementations, the nonlinear solver object may be created
using a call of the form

SUNNonlinearSolver NLS = SUNNonlinSol_*(...);
where * can be replaced with “Newton”, “FixedPoint”, or other options, as discussed in the sections Nonlinear
solver interface functions and Description of the SUNNonlinearSolver Module.

11. Attach nonlinear solver module

If a nonlinear solver object was created above, then it must be attached to ARKStep using the call (for details
see the section Nonlinear solver interface functions):

ier = ARKStepSetNonlinearSolver(...);

12. Set nonlinear solver optional inputs

Call the appropriate set functions for the selected nonlinear solver module to change optional inputs specific to
that nonlinear solver. These must be called after attaching the nonlinear solver to ARKStep, otherwise the op-
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13.

14.

15.

16.

17.

18.

19.

20.

21.

tional inputs will be overridden by ARKStep defaults. See the section Description of the SUNNonlinearSolver
Module for more information on optional inputs.

Set optional inputs

Call ARKStepSet * functions to change any optional inputs that control the behavior of ARKStep from their
default values. See the section Optional input functions for details.

Specify rootfinding problem

Optionally, call ARKStepRoot Init () to initialize a rootfinding problem to be solved during the integra-
tion of the ODE system. See the section Rootfinding initialization function for general details, and the section
Optional input functions for relevant optional input calls.

Advance solution in time

For each point at which output is desired, call

ier = ARKStepEvolve (arkode_mem, tout, yout, &tret, itask);

Here, itask specifies the return mode. The vector yout (which can be the same as the vector y0 above) will
contain y(teu ). See the section ARKStep solver function for details.

Get optional outputs

Call ARKStepGet * functions to obtain optional output. See the section Optional output functions for details.
Deallocate memory for solution vector

Upon completion of the integration, deallocate memory for the vector y (or yout) by calling the destructor
function:

N_VDestroy (y) ;

Free solver memory

Call ARKStepFree (&arkode_mem) to free the memory allocated for the ARKStep module (and any non-
linear solver module).

Free linear solver and matrix memory

Call SUNLinSolFree () and (possibly) SUNMatDestroy () to free any memory allocated for the linear
solver and matrix objects created above.

Free nonlinear solver memory

If a user-supplied SUNNonlinearSolver was provided to ARKStep, then call SUNNonlinSolFree ()
to free any memory allocated for the nonlinear solver object created above.

Finalize MPI, if used

CallMPI_Finalize to terminate MPI.

SUNDIALS provides some linear solvers only as a means for users to get problems running and not as highly effi-
cient solvers. For example, if solving a dense system, we suggest using the LAPACK solvers if the size of the linear
system is > 50, 000 (thanks to A. Nicolai for his testing and recommendation). The table below shows the linear
solver interfaces available as SUNLinearSolver modules and the vector implementations required for use. As
an example, one cannot use the dense direct solver interfaces with the MPI-based vector implementation. However,
as discussed in section Description of the SUNLinearSolver module the SUNDIALS packages operate on generic
SUNLinearSolver objects, allowing a user to develop their own solvers should they so desire.
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4.4.1 SUNDIALS linear solver interfaces and vector implementations that can be used for

each

Linear Solver
Interface

Parallel
(MPI)

OpenM

P pThread

s hypre
Vec.

PETSc
Vec.

CUDA

RAJA

User

n
c
°
jo2

Dense

Band

LapackDense

LapackBand

KLU

SuperLU_DIST

o

>~

o

SuperLU_MT

SPGMR

SPFGMR

SPBCGS

SPTFQMR

PCG

User supplied

XMXMXMXMXMMNX&-%

eliaikelkaikalls

DAL R R DR PR P | | | R R <

DAL R DR DR PR P | | K| R R <

[ PR| R X| <| 4

eliaikelRaiklle

ikl aikallel

D[ PR| || < 4

DAL PR AL R PR A < R R | | | 4

4.5 ARKStep User-callable functions

This section describes the functions that are called by the user to setup and then solve an IVP using the ARKStep
time-stepping module. Some of these are required; however, starting with the section Optional input functions, the

functions listed involve optional inputs/outputs or restarting, and those paragraphs may be skipped for a casual use of
ARKode’s ARKStep module. In any case, refer to the preceding section, A skeleton of the user’s main program, for

the correct order of these calls.

On an error, each user-callable function returns a negative value (or NULL if the function returns a pointer) and sends
an error message to the error handler routine, which prints the message to st derr by default. However, the user can

set a file as error output or can provide her own error handler function (see the section Optional input functions for

details).

4.5.1 ARKStep initialization and deallocation functions

void* ARKStepCreate (ARKRhsFn fe, ARKRhsFn fi, realtype 10, N_Vector y0)

This function creates an internal memory block for a problem to be solved using the ARKStep time-stepping

module in ARKode.

Arguments:

* fe — the name of the C function (of type ARKRhsFn ()) defining the explicit portion of the right-

hand side function in M § = fZ(t,y) + fL(t,y).

* fi —the name of the C function (of type ARKRhsFn ()) defining the implicit portion of the right-

hand side function in M 5 = fE(¢,y) + fL(t,y).

¢ {0 — the initial value of ¢.

* y0 - the initial condition vector y(¢).

Return value: If successful, a pointer to initialized problem memory of type voidx, to be passed to all user-
facing ARKStep routines listed below. If unsuccessful, a NULL pointer will be returned, and an error message
will be printed to stderr.

4.5. ARKStep User-callable functions
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void ARKStepFree (void** arkode_mem)
This function frees the problem memory arkode_mem created by ARKStepCreate ().

Arguments:
* arkode_mem — pointer to the ARKStep memory block.

Return value: None

4.5.2 ARKStep tolerance specification functions

These functions specify the integration tolerances. One of them should be called before the first call to
ARKStepEvolve (); otherwise default values of reltol = le-4 and abstol = 1e-9 will be used, which
may be entirely incorrect for a specific problem.

The integration tolerances reltol and abstol define a vector of error weights, ewt. In the case of
ARKStepSStolerances (), this vector has components

ewt[1] = 1.0/ (reltolxabs(y[i]) + abstol);

whereas in the case of ARKStepSVtolerances () the vector components are given by

ewt[1] = 1.0/ (reltol+abs(y[i]) + abstol[i]);

This vector is used in all error and convergence tests, which use a weighted RMS norm on all error-like vectors v:

| X 1/2
_ . 2
[vllwrams = (N > (v; ewt;) ) ;

i=1
where N is the problem dimension.

Alternatively, the user may supply a custom function to supply the ewt vector, through a call to
ARKStepWFtolerances ().

int ARKStepSStolerances (void* arkode_mem, realtype reltol, realtype abstol)
This function specifies scalar relative and absolute tolerances.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* reltol — scalar relative tolerance.
e abstol — scalar absolute tolerance.
Return value:
* ARK_SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL
* ARK_NO_MALLOC if the ARKStep memory was not allocated by the time-stepping module
* ARK_ILL_INPUT if an argument has an illegal value (e.g. a negative tolerance).

int ARKStepSVtolerances (void* arkode_mem, realtype reltol, N_Vector abstol)
This function specifies a scalar relative tolerance and a vector absolute tolerance (a potentially different abso-
lute tolerance for each vector component).

Arguments:

* arkode_mem — pointer to the ARKStep memory block.
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* reltol — scalar relative tolerance.
* abstol — vector containing the absolute tolerances for each solution component.
Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL
* ARK_NO_MALLOC if the ARKStep memory was not allocated by the time-stepping module
e ARK ILL_INPUT if an argument has an illegal value (e.g. a negative tolerance).

int ARKStepWFtolerances (void* arkode_mem, ARKEwtFn efun)
This function specifies a user-supplied function efun to compute the error weight vector ewt.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.

* efun — the name of the function (of type ARKEwt Fn ()) that implements the error weight vector
computation.

Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL
* ARK_NO_MALLOC if the ARKStep memory was not allocated by the time-stepping module

Moreover, for problems involving a non-identity mass matrix M # I, the units of the solution vector y may
differ from the units of the IVP, posed for the vector My. When this occurs, iterative solvers for the Newton lin-
ear systems and the mass matrix linear systems may require a different set of tolerances. Since the relative tol-
erance is dimensionless, but the absolute tolerance encodes a measure of what is “small” in the units of the re-
spective quantity, a user may optionally define absolute tolerances in the equation units. In this case, ARKStep
defines a vector of residual weights, rwt for measuring convergence of these iterative solvers. In the case of
ARKStepResStolerance (), this vector has components

rwt[1] = 1.0/ (reltolxabs(My[i]) + rabstol);

whereas in the case of ARKStepResVtolerance () the vector components are given by

rwt[1] = 1.0/ (reltolxabs (My[i]) + rabstol[i]);
This residual weight vector is used in all iterative solver convergence tests, which similarly use a weighted RMS
norm on all residual-like vectors v:
L X 1/2
2
[vllwrms = (N Z;(Ui rwt;) ) ;
i=

where N is the problem dimension.

As with the error weight vector, the user may supply a custom function to supply the rwt vector, through a call to
ARKStepResFtolerance (). Further information on all three of these functions is provided below.

int ARKStepResStolerance (void* arkode_mem, realtype abstol)
This function specifies a scalar absolute residual tolerance.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.

e rabstol — scalar absolute residual tolerance.
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Return value:
* ARK_SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL
* ARK_NO_MALLOC if the ARKStep memory was not allocated by the time-stepping module
* ARK_ILL_INPUT if an argument has an illegal value (e.g. a negative tolerance).

int ARKStepResVtolerance (void* arkode_mem, N_Vector rabstol)
This function specifies a vector of absolute residual tolerances.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* rabstol — vector containing the absolute residual tolerances for each solution component.
Return value:

e ARK SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory was NULL

* ARK_NO_MALLOC if the ARKStep memory was not allocated by the time-stepping module

e ARK_ILL_INPUT if an argument has an illegal value (e.g. a negative tolerance).

int ARKStepResFtolerance (void* arkode_mem, ARKRwtFn rfun)
This function specifies a user-supplied function rfun to compute the residual weight vector rwt.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.

* rfun — the name of the function (of type ARKRwtFn ()) that implements the residual weight vector
computation.

Return value:
e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL
* ARK_NO_MALLOC if the ARKStep memory was not allocated by the time-stepping module

4.5.2.1 General advice on the choice of tolerances

For many users, the appropriate choices for tolerance values in reltol, abstol, and rabstol are a concern.
The following pieces of advice are relevant.

1. The scalar relative tolerance reltol is to be set to control relative errors. So a value of 10~ means that
errors are controlled to .01%. We do not recommend using reltol larger than 10~3. On the other hand,
reltol should not be so small that it is comparable to the unit roundoff of the machine arithmetic (generally
around 10~ 1% for double-precision).

2. The absolute tolerances abst ol (whether scalar or vector) need to be set to control absolute errors when any
components of the solution vector y may be so small that pure relative error control is meaningless. For exam-
ple, if y; starts at some nonzero value, but in time decays to zero, then pure relative error control on y; makes
no sense (and is overly costly) after y; is below some noise level. Then abstol (if scalar) or abstol [1i]

(if a vector) needs to be set to that noise level. If the different components have different noise levels, then
abstol should be a vector. For example, see the example problem ark_robertson.c, and the discussion
of it in the ARKode Examples Documentation /R201/8]. In that problem, the three components vary between
0 and 1, and have different noise levels; hence the at o1 s vector therein. It is impossible to give any general
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advice on abstol values, because the appropriate noise levels are completely problem-dependent. The user
or modeler hopefully has some idea as to what those noise levels are.

3. The residual absolute tolerances rabstol (whether scalar or vector) follow a similar explanation as for
abstol, except that these should be set to the noise level of the equation components, i.e. the noise level of
My. For problems in which M = I, it is recommended that rabstol be left unset, which will default to the
already-supplied abstol values.

4. Finally, it is important to pick all the tolerance values conservatively, because they control the error commit-
ted on each individual step. The final (global) errors are an accumulation of those per-step errors, where that
accumulation factor is problem-dependent. A general rule of thumb is to reduce the tolerances by a factor of
10 from the actual desired limits on errors. So if you want .01% relative accuracy (globally), a good choice
for reltol is 107°. In any case, it is a good idea to do a few experiments with the tolerances to see how the
computed solution values vary as tolerances are reduced.

4.5.2.2 Advice on controlling nonphysical negative values

In many applications, some components in the true solution are always positive or non-negative, though at times very
small. In the numerical solution, however, small negative (nonphysical) values can then occur. In most cases, these
values are harmless, and simply need to be controlled, not eliminated, but in other cases any value that violates a
constraint may cause a simulation to halt. For both of these scenarios the following pieces of advice are relevant.

1. The best way to control the size of unwanted negative computed values is with tighter absolute tolerances.
Again this requires some knowledge of the noise level of these components, which may or may not be differ-
ent for different components. Some experimentation may be needed.

2. If output plots or tables are being generated, and it is important to avoid having negative numbers appear there
(for the sake of avoiding a long explanation of them, if nothing else), then eliminate them, but only in the con-
text of the output medium. Then the internal values carried by the solver are unaffected. Remember that a
small negative value in y returned by ARKStep, with magnitude comparable to abstol or less, is equivalent
to zero as far as the computation is concerned.

3. The user’s right-hand side routines f¥ and f! should never change a negative value in the solution vector y
to a non-negative value in attempt to “fix” this problem, since this can lead to numerical instability. If the f¥
or f! routines cannot tolerate a zero or negative value (e.g. because there is a square root or log), then the of-
fending value should be changed to zero or a tiny positive number in a temporary variable (not in the input y
vector) for the purposes of computing f(¢,) or f1(t,y).

4. Positivity and non-negativity constraints on components can be enforced by use of the recoverable error return
feature in the user-supplied right-hand side functions, f¥ and f!. When a recoverable error is encountered,
ARKStep will retry the step with a smaller step size, which typically alleviates the problem. However, because
this option involves some additional overhead cost, it should only be exercised if the use of absolute tolerances
to control the computed values is unsuccessful.

4.5.3 Linear solver interface functions

As previously explained, the Newton iterations used in solving implicit systems within ARKStep require the solution
of linear systems of the form

A2 5m) = G (o)
where
A=M—~J,  J= E)afyf.

ARKode’s ARKLS linear solver interface supports all valid SUNLinearSolver modules for this task.
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Matrix-based SUNLinearSolver modules utilize SUNMat rix objects to store the approximate Jacobian matrix
J, the Newton matrix A, the mass matrix M, and, when using direct solvers, the factorizations used throughout the
solution process.

Matrix-free SUNLinearSolver modules instead use iterative methods to solve the Newton systems of equations,
and only require the action of the matrix on a vector, Av. With most of these methods, preconditioning can be done
on the left only, on the right only, on both the left and the right, or not at all. The exceptions to this rule are SPFGMR
that supports right preconditioning only and PCG that performs symmetric preconditioning. For the specification of
a preconditioner, see the iterative linear solver portions of the sections Optional input functions and User-supplied
functions.

If preconditioning is done, user-supplied functions should be used to define left and right preconditioner matrices P;
and P, (either of which could be the identity matrix), such that the product P; P» approximates the Newton matrix
A=M —~J.

To specify a generic linear solver for ARKStep to use for the Newton systems, after the call to ARKStepCreate ()
but before any calls to ARKStepEvolve (), the user’s program must create the appropriate SUNLinearSolver
object and call the function ARKStepSetLinearSolver (), as documented below. To create the
SUNLinearSolver object, the user may call one of the SUNDIALS-packaged SUNLinSol module constructor
routines via a call of the form

SUNLinearSolver LS = SUNLinSol_*(...);

The current list of such constructor routines includes SUNLinSol_Dense (), SUNLinSol_Band(),
SUNLinSol_LapackDense (), SUNLinSol_LapackBand(), SUNLinSol_KLU(),
SUNLinSol_SuperLUMT (), SUNLinSol_SuperLUDIST (), SUNLinSol_cuSolverSp_batchQR(),
SUNLinSol_ SPGMR (), SUNLinSol SPFGMR (), SUNLinSol_ SPBCGS (), SUNLinSol_ SPTFQMR (), and
SUNLinSol_PCG().

Alternately, a user-supplied SUNLinearSolver module may be created and used instead. The use of each of the
generic linear solvers involves certain constants, functions and possibly some macros, that are likely to be needed
in the user code. These are available in the corresponding header file associated with the specific SUNMat rix or
SUNLinearSolver module in question, as described in the sections Matrix Data Structures and Description of
the SUNLinearSolver module.

Once this solver object has been constructed, the user should attach it to ARKStep via a call to
ARKStepSetLinearSolver (). The first argument passed to this function is the ARKStep memory pointer
returned by ARKStepCreate (); the second argument is the SUNLinearSolver object created above. The
third argument is an optional SUNMat rix object to accompany matrix-based SUNLinearSolver inputs (for
matrix-free linear solvers, the third argument should be NULL). A call to this function initializes the ARKLS linear
solver interface, linking it to the ARKStep integrator, and allows the user to specify additional parameters and
routines pertinent to their choice of linear solver.

int ARKStepSetLinearSolver (void* arkode_mem, SUNLinearSolver LS, SUNMatrix J)
This function specifies the SUNLinearSolver object that ARKStep should use, as well as a template Jaco-
bian SUNMat rix object (if applicable).

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

e LS —the SUNLinearSolver object to use.

 J —the template Jacobian SUNMat rix object to use (or NULL if not applicable).
Return value:

e ARKLS SUCCESS if successful

* ARKLS_MEM_NULL if the ARKStep memory was NULL
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* ARKLS_MEM_FAIL if there was a memory allocation failure

e ARKLS_ILL_INPUT if ARKLS is incompatible with the provided LS or J input objects, or the cur-
rent N_Vector module.

Notes: If LS is a matrix-free linear solver, then the J argument should be NULL.

If LS is a matrix-based linear solver, then the template Jacobian matrix J will be used in the solve process, so if
additional storage is required within the SUNMat rix object (e.g. for factorization of a banded matrix), ensure
that the input object is allocated with sufficient size (see the documentation of the particular SUNMATRIX
type in the section Matrix Data Structures for further information).

When using sparse linear solvers, it is typically much more efficient to supply J so that it includes the full spar-
sity pattern of the Newton system matrices A = I —~vJ (or A = M — ~J in the case of non-identity mass ma-
trix), even if J itself has zeros in nonzero locations of I (or M). The reasoning for this is that A is constructed
in-place, on top of the user-specified values of J, so if the sparsity pattern in J is insufficient to store A then it
will need to be resized internally by ARKStep.

4.5.4 Mass matrix solver specification functions

As discussed in section Mass matrix solver (ARKStep only), if the ODE system involves a non-identity mass matrix
M # I, then ARKStep must solve linear systems of the form

Mz =b.

ARKode’s ARKLS mass-matrix linear solver interface supports all valid SUNLinearSolver modules for this
task. For iterative linear solvers, user-supplied preconditioning can be applied. For the specification of a precondi-
tioner, see the iterative linear solver portions of the sections Optional input functions and User-supplied functions.

If preconditioning is to be performed, user-supplied functions should be used to define left and right preconditioner
matrices P; and P, (either of which could be the identity matrix), such that the product P, P, approximates the mass
matrix M.

To specify a generic linear solver for ARKStep to use for mass matrix systems, after the call to

ARKStepCreate () but before any calls to ARKStepEvolve (), the user’s program must create the appropriate
SUNLinearSolver object and call the function ARKStepSetMassLinearSolver (), as documented below.
The first argument passed to this functions is the ARKStep memory pointer returned by ARKStepCreate (); the
second argument is the desired SUNLinearSolver object to use for solving mass matrix systems. The third object
is a template SUNMat rix to use with the provided SUNLinearSolver (if applicable). The fourth input is a flag
to indicate whether the mass matrix is time-dependent, i.e. M = M (t) or not. A call to this function initializes

the ARKLS mass matrix linear solver interface, linking this to the main ARKStep integrator, and allows the user to
specify additional parameters and routines pertinent to their choice of linear solver.

The use of each of the generic linear solvers involves certain constants and possibly some macros, that are likely

to be needed in the user code. These are available in the corresponding header file associated with the specific
SUNMatrix or SUNLinearSolver module in question, as described in the sections Matrix Data Structures and
Description of the SUNLinearSolver module.

Note: if the user program includes linear solvers for both the Newton and mass matrix systems, these must have the
same type:

e If both are matrix-based, then they must utilize the same SUNMat rix type, since these will be added when
forming the Newton system matrices .A. In this case, both the Newton and mass matrix linear solver interfaces
can use the same SUNLinearSolver object, although different solver objects (e.g. with different solver
parameters) are also allowed.

e If both are matrix-free, then the Newton and mass matrix SUNLinearSolver objects must be different.
These may even use different solver algorithms (SPGMR, SPBCGS, etc.), if desired. For example, if the mass
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matrix is symmetric but the Jacobian is not, then PCG may be used for the mass matrix systems and SPGMR
for the Newton systems.

As with the Newton system solvers, the mass matrix linear system solvers listed below are all built on top of generic
SUNDIALS solver modules.

int ARKStepSetMassLinearSolver (void* arkode_mem, SUNLinearSolver LS, SUNMatrix M,

booleantype time_dep)
This function specifies the SUNLinearSolver object that ARKStep should use for mass matrix systems, as

well as a template SUNMat rix object.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
e LS —the SUNLinearSolver object to use.
* M — the template mass SUNMat rix object to use.

* time_dep — flag denoting whether the mass matrix depends on the independent variable (M = M (t))
or not (M # M(t)). SUNTRUE indicates time-dependence of the mass matrix.

Return value:
e ARKLS SUCCESS if successful
* ARKLS_MEM_NULL if the ARKStep memory was NULL
* ARKLS_MEM_FAIL if there was a memory allocation failure

e ARKLS_ILL_INPUT if ARKLS is incompatible with the provided LS or M input objects, or the cur-
rent N_Vector module.

Notes: If LS is a matrix-free linear solver, then the M argument should be NULL.

If LS is a matrix-based linear solver, then the template mass matrix M will be used in the solve process, so if
additional storage is required within the SUNMat rix object (e.g. for factorization of a banded matrix), ensure
that the input object is allocated with sufficient size.

If called with time_dep set to SUNFALSE, then the mass matrix is only computed and factored once (or when
either ARKStepReInit () or:c:func’ARKStepResize()* are called), with the results reused throughout the
entire ARKStep simulation.

Unlike the system Jacobian, the system mass matrix is not approximated using finite-differences of any func-
tions provided to ARKStep. Hence, use of the a matrix-based LS requires the user to provide a mass-matrix
constructor routine (see ARKLsMassFn and ARKStepSetMassFn ()).

Similarly, the system mass matrix-vector-product is not approximated using finite-differences of any functions
provided to ARKStep. Hence, use of a matrix-free LS requires the user to provide a mass-matrix-times-vector
product routine (see ARKL.sMassTimesVecFn and ARKStepSetMassTimes ()).

4.5.5 Nonlinear solver interface functions

When changing the nonlinear solver in ARKStep, after the call to ARKStepCreate () but before any calls

to ARKStepEvolve (), the user’s program must create the appropriate SUNNonlinSol object and call
ARKStepSetNonlinearSolver (), as documented below. If any calls to ARKStepEvolve () have been
made, then ARKStep will need to be reinitialized by calling ARKStepReInit () to ensure that the nonlinear
solver is initialized correctly before any subsequent calls to ARKStepEvolve ().

The first argument passed to the routine ARKStepSetNonlinearSolver () is the ARKStep memory pointer
returned by ARKStepCreate (); the second argument passed to this function is the desired SUNNonlinSol object
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to use for solving the nonlinear system for each implicit stage. A call to this function attaches the nonlinear solver to
the main ARKStep integrator.

int ARKStepSetNonlinearSolver (void* arkode_mem, SUNNonlinearSolver NLS)
This function specifies the SUNNonlinearSolver object that ARKStep should use for implicit stage
solves.

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* NLS —the SUNNonlinearSolver object to use.
Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL
* ARK_MEM_FAIL if there was a memory allocation failure
e ARK_ILL_INPUT if ARKStep is incompatible with the provided NLS input object.

Notes: ARKStep will use the Newton SUNNonlinSol module by default; a call to this routine replaces that
module with the supplied NLS object.

4.5.6 Rootfinding initialization function

As described in the section Rootfinding, while solving the IVP, ARKode’s time-stepping modules have the capability
to find the roots of a set of user-defined functions. To activate the root-finding algorithm, call the following func-
tion. This is normally called only once, prior to the first call to ARKStepEvolve (), but if the rootfinding prob-
lem is to be changed during the solution, ARKStepRoot Init () can also be called prior to a continuation call to
ARKStepEvolve ().

int ARKStepRoot Init (void* arkode_mem, int nrifn, ARKRootFn g)
Initializes a rootfinding problem to be solved during the integration of the ODE system. It must be called after
ARKStepCreate (), and before ARKStepEvolve ().

Arguments:
* arkode_mem — pointer to the ARKStep memory block.
* nrtfn — number of functions g;, an integer > 0.

* g —name of user-supplied function, of type ARKRootFn (), defining the functions g; whose roots
are sought.

Return value:
e ARK_SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory was NULL
* ARK_MEM_FAIL if there was a memory allocation failure
* ARK_ILL_INPUT if nrifn is greater than zero but g = NULL.

Notes: To disable the rootfinding feature after it has already been initialized, or to free memory associated
with ARKStep’s rootfinding module, call ARKStepRootInit with nrtfn = 0.

Similarly, if a new IVP is to be solved with a call to ARKStepReInit (), where the new IVP has no
rootfinding problem but the prior one did, then call ARKStepRootInit with nrtfn = 0.
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4.5.7 ARKStep solver function

This is the central step in the solution process — the call to perform the integration of the IVP. The input argument
itask specifies one of two modes as to where ARKStep is to return a solution. These modes are modified if the
user has set a stop time (with a call to the optional input function ARKStepSet StopTime ()) or has requested

rootfinding.

int ARKStepEvolve (void* arkode_mem, realtype tout, N_Vector yout, realtype *tret, int itask)
Integrates the ODE over an interval in £.

Arguments:

arkode_mem — pointer to the ARKStep memory block.

tout — the next time at which a computed solution is desired.

yout — the computed solution vector.

tret — the time corresponding to yout (output).

itask — a flag indicating the job of the solver for the next user step.

The ARK_NORMAL option causes the solver to take internal steps until it has just overtaken a user-
specified output time, fout, in the direction of integration, i.e. ¢,,_1 < tout < t, for forward inte-
gration, or t,, < tout < t,_; for backward integration. It will then compute an approximation to
the solution y(tout) by interpolation (using one of the dense output routines described in the section
Interpolation).

The ARK_ONE_STEP option tells the solver to only take a single internal step y,,—1 — ¥, and then
return control back to the calling program. If this step will overtake fout then the solver will again
return an interpolated result; otherwise it will return a copy of the internal solution y,, in the vector
yout

Return value:

ARK_SUCCESS if successful.

ARK_ROOT_RETURN if ARKStepEvolve () succeeded, and found one or more roots. If the
number of root functions, nrtfn, is greater than 1, call ARKStepGetRoot Info () to see which
g; were found to have a root at (*trer).

ARK_TSTOP_RETURN if ARKStepEvolve () succeeded and returned at tstop.
ARK_MEM_NULL if the arkode_mem argument was NULL.
ARK_NO_MALLOC if arkode_mem was not allocated.

ARK_ILL_INPUT if one of the inputs to ARKStepEvolve () isillegal, or some other input to the
solver was either illegal or missing. Details will be provided in the error message. Typical causes of
this failure:

1. A component of the error weight vector became zero during internal time-stepping.

2. The linear solver initialization function (called by the user after calling ARKStepCreate ())
failed to set the linear solver-specific Isolve field in arkode_mem.

3. A root of one of the root functions was found both at a point ¢ and also very near ¢.
4. The initial condition violates the inequality constraints.

ARK_TOO_MUCH_WORK if the solver took mxstep internal steps but could not reach fout. The
default value for mxstep is MXSTEP_DEFAULT = 500.

ARK_TOO_MUCH_ACC 1if the solver could not satisfy the accuracy demanded by the user for some
internal step.
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* ARK_ERR_FAILURE if error test failures occurred either too many times (ark_maxnef) during one
internal time step or occurred with |h| = Ay ip.

* ARK_CONV_FAILURE if either convergence test failures occurred too many times (ark_maxncf)
during one internal time step or occurred with |h| = i

e ARK LINIT FAIL if the linear solver’s initialization function failed.

* ARK_LSETUP_FAIL if the linear solver’s setup routine failed in an unrecoverable manner.
e ARK LSOLVE_FAIL if the linear solver’s solve routine failed in an unrecoverable manner.
e ARK_MASSINIT FAIL if the mass matrix solver’s initialization function failed.

* ARK_MASSSETUP_FAIL if the mass matrix solver’s setup routine failed.

* ARK_MASSSOLVE_FAIL if the mass matrix solver’s solve routine failed.

* ARK_VECTOROP_ERR a vector operation error occured.

Notes: The input vector yout can use the same memory as the vector y0 of initial conditions that was passed to
ARKStepCreate ().

In ARK_ONE_STEP mode, tout is used only on the first call, and only to get the direction and a rough scale of
the independent variable.

All failure return values are negative and so testing the return argument for negative values will trap all
ARKStepEvolve () failures.

Since interpolation may reduce the accuracy in the reported solution, if full method accuracy is desired the
user should issue a call to ARKStepSetStopTime () before the call to ARKStepEvolve () to spec-
ify a fixed stop time to end the time step and return to the user. Upon return from ARKStepEvolve (),

a copy of the internal solution y,, will be returned in the vector yout. Once the integrator returns at

a tstop time, any future testing for zsfop is disabled (and can be re-enabled only though a new call to
ARKStepSetStopTime ()).

On any error return in which one or more internal steps were taken by ARKStepEvolve (), the returned
values of tret and yout correspond to the farthest point reached in the integration. On all other error returns,
tret and yout are left unchanged from those provided to the routine.

4.5.8 Optional input functions

There are numerous optional input parameters that control the behavior of the ARKStep solver, each of which may
be modified from its default value through calling an appropriate input function. The following tables list all optional
input functions, grouped by which aspect of ARKStep they control. Detailed information on the calling syntax and
arguments for each function are then provided following each table.

The optional inputs are grouped into the following categories:
* General ARKStep options (Optional inputs for ARKStep),
¢ IVP method solver options (Optional inputs for IVP method selection),
* Step adaptivity solver options (Optional inputs for time step adaptivity),
 Implicit stage solver options (Optional inputs for implicit stage solves),
* Linear solver interface options (Linear solver interface optional input functions), and
* Rootfinding options (Rootfinding optional input functions).

For the most casual use of ARKStep, relying on the default set of solver parameters, the reader can skip to the fol-
lowing section, User-supplied functions.
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We note that, on an error return, all of the optional input functions send an error message to the error handler func-
tion. All error return values are negative, so a test on the return arguments for negative values will catch all errors.
Finally, a call to an ARKStepSet =+ function can generally be made from the user’s calling program at any time
and, if successful, takes effect immediately. ARKStepSet *» + functions that cannot be called at any time note this
in the “Notes:” section of the function documentation.

4.5.8.1 Optional inputs for ARKStep

Optional input

Function name

Default

Return ARKStep parameters to their de-
faults

ARKStepSetDefaults ()

internal

Set dense output interpolation type

ARKStepSetInterpolantType ()

ARK_INTERP_HERMITE

Set dense output polynomial degree ARKStepSetInterpolantDegree ()5

Supply a pointer to a diagnostics output ARKStepSetDiagnostics () NULL

file

Supply a pointer to an error output file ARKStepSetErrFile () stderr
Supply a custom error handler function ARKStepSetErrHandlerFn () internal fn
Disable time step adaptivity (fixed-step ARKStepSetFixedStep () disabled
mode)

Supply an initial step size to attempt ARKStepSetInitStep () estimated
Maximum no. of warnings for t,, +h =t, | ARKStepSetMaxHnillWarns () 10
Maximum no. of internal steps before tout | ARKStepSetMaxNumSteps () 500
Maximum absolute step size ARKStepSetMaxStep () %)
Minimum absolute step size ARKStepSetMinStep () 0.0
Set a value for ¢4, ARKStepSetStopTime () 00
Supply a pointer for user data ARKStepSetUserData () NULL
Maximum no. of ARKStep error test fail- | ARKStepSetMaxErrTestFails () | 7T

ures

Set ‘optimal’ adaptivity params. for a ARKStepSetOptimalParams () internal
method

Set inequality constraints on solution ARKStepSetConstraints () NULL
Set max number of constraint failures ARKStepSetMaxNumConstrFails ()10

int ARKStepSetDefaults (void* arkode_mem)

Resets all optional input parameters to ARKStep’s original default values.

Arguments:

* arkode_mem — pointer to the ARKStep memory block.

Return value:

e ARK SUCCESS if successful
* ARK_MEM_NULL if the ARKStep memory is NULL
* ARK_ILL_INPUT if an argument has an illegal value

Notes: Does not change the user_data pointer or any parameters within the specified time-stepping module.

Also leaves alone any data structures or options related to root-finding (those can be reset using

ARKStepRootInit ()).

int ARKStepSetInterpolantType (void* arkode_mem, int itype)

Specifies use of the Lagrange or Hermite interpolation modules (used for dense output — interpolation of solu-
tion output values and implicit method predictors).
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Arguments:

* arkode_mem — pointer to the ARKStep memory block.

* itype — requested interpolant type (ARK_INTERP_HERMITE or ARK_INTERP_LAGRANGE)
Return value:

e ARK_SUCCESS if successful

* ARK_MEM_NULL if the ARKStep memory is NULL

e ARK_MEM_FAIL if the interpolation module cannot be allocated

* ARK_ILL_INPUT if the itype argument is not recognized or the interpolation module has already
been initialized

Notes: The Hermite interpolation module is described in the Section Hermite interpolation module, and the
Lagrange interpolation module is described in the Section Lagrange interpolation module.

This routine frees any previously-allocated interpolation module, and re-creates one according to the specified
argument. Thus any pre