
clik Documentation
Release 1.0

The Planck collaboration

March 05, 2013

CONTENTS

1 Design choices 3
1.1 A likelihood is entirely defined by a likelihood file. 3
1.2 The library computes an approximation of the log likelihood . 3
1.3 The input of the compute function are multipoles of the power spectra and nuisance parameters. . . . 3
1.4 Pitfalls . 4
1.5 Lensing likelihood . 4

2 Installing 5
2.1 Requisites . 5
2.2 Install with waf . 6
2.3 Installing with make . 9
2.4 Environment variables . 10

3 Interfacing the library with a c executable 11
3.1 Compiling and linking . 11
3.2 API - CMB likelihood . 11
3.3 API - lensing likelihood . 12

4 Interfacing the library with a f90 executable 15
4.1 Compiling and linking . 15
4.2 API - CMB likelihood . 15
4.3 API - lensing likelihood . 16

5 Interfacing the library with python 19
5.1 API - CMB . 19
5.2 API - lensing . 19

6 Using WMAP9 likelihood 21

7 Using actpst likelihood 23

8 Playing around with likelihood files 25
8.1 Computing a log likelihood from the command line . 25
8.2 Printing info about a file . 25
8.3 Modifying the content of a likelihood file . 26
8.4 Dealing with likelihood files with external data . 26
8.5 Extracting the test Cl from a likelihood file . 27
8.6 Computing a slice through a log likelihood from the command line 27

9 Indices and tables 29

i

Index 31

ii

clik Documentation, Release 1.0

clik is a C library containing codes to compute different approximations for the Planck likelihood. Wrappers are
provided so that the functions can also be called from python and f90.

CONTENTS 1

clik Documentation, Release 1.0

2 CONTENTS

CHAPTER

ONE

DESIGN CHOICES

1.1 A likelihood is entirely defined by a likelihood file.

The likelihood files (in fact directories, containing data as fits files and metadata as ascii files) contain all the info
needed to define the likelihood. This encompass both the data needed to compute the likelihood,but also parame-
ters describing the type of mathematical approximation used to compute this particular likelihood, and parameters
describing the expected input of the likelihood.

A likelihood file can also be the combinaison of various underlying likelihoods, the computation from the top likeli-
hood will be the product of each of the underlying one. A tool is distributed to allow joining and disjoining likelihoods.
This means that a likelihood file containing the some of different likelihood approximation will have to contain the
data for each of those approximation. This will translate into possibly huge file. And variations of those likelihoods
will contains yet more copy of this huge data. To solve partially this problem, it is possible for the likelihoods that
need a lot of data to optionally refer to external files. This will be the case in particular for the WMAP and lowlike
likelihoods. In those cases, the data can either be included in the file (as described above) or installed in some direc-
tory, in which case the likelihood file simply refers to the path of this directory.The latter case improve the efficiency
of the initialization of clik when using this kind of likelihood files.

In order to use the library, the first step is thus to initialize it with such a file. Functions or subroutine to perform this
initialization are available in each language. Another function is provided to cleanup the memory at the end of the use
of a given likelihood. Some likelihoods can be initialized within the same session, allowing to perform comparison
between different likelihood approximation whithin the same run.

1.2 The library computes an approximation of the log likelihood

And nothing else. The library does not compute minus the log likelihood or a chi2 like value. Just the log likelihood.
A function is provided in each language to compute the log likelihood, given a set of parameters.

1.3 The input of the compute function are multipoles of the power
spectra and nuisance parameters.

The compute function expect one single vector of double. This vector must contains power spectra one after the
other, starting al l=0, in microK^2, and then the nuisance parameters. Since the likelihood is defined by the likelihood
file the exact range of power spectra needed by this function can vary from likelihood approximation to likelihood
approximations. The same holds for the nuisance parameters. Functions are provided to query a likelihood file and
obtain this info. More precisely, three such function are available.

3

clik Documentation, Release 1.0

• clik_get_has_cl: retrieve an array of 6 flags, describing the power spectra needed (1 if needed 0 otherwise). The
order is TT, EE, BB, TE, TB, EB. Thus if this function answers (1,1,0,1,0,0) it means that the input vector of
the compute function must contain, in that order, the power spectra for TT, EE an TE.

• clik_get_lmax: retrieve an array of 6 integer giving the lmax value for each power spectra. Order is same as
above. -1 means that the spectra is not needed. Thus if this function answer (2000,1000,-1,2000,-1,-1). This
means that the vector must contain, in that order, the first 2001 multipoles of the TT power spectra (from 0 to
2000 included) followed by the first 1001 multipoles of the EE power spectra (0 to 1000 included) and next
by the first 2001 multipoles of the TE power spectra (0 to 2000 included). Thus the first 5003 elements of the
parameter vectors are the values of different power spectra. Note that this is also the sum of the result array of
clik_get_lmax plus 6. Isn’t this fantastic ?

• clik_get_parameter_names: returns the number of nuisance parameters and fills an array of string giving their
names. For example, if this function returns 2, and (‘sigma8’, ‘fwhm_error’) it means that the last two elements
of the parameter vector must be the value of sigma8 and fwhm_error, whatever those parameters mean.

To sumarize, the input vector of the compute function must be an array of N = Ncl + Nnuis doubles. Ncl being the
sum + 6 of the return array of clik_get_lmax, and Nnuis is the return of clik_get_parameter_names. The power spectra
must be the Ncl first elements of that array. They start at C0 and en up at some Clmax[i] (included), the ith elements
of the return of clik_get_lmax. The ordering of the power spectra is always TT EE BB TE TB EB. The Cls are in
microK^2. The nuisnce parameters are the Nnuis last element of the parameter vector. Their names are given by the
return array of the function clik_get_parameter_names.

1.4 Pitfalls

The function computes the log likelihood ?

The Cls must be given in that order TT, EE, BB, TE, TB, EB. And, yes, the library expects C0 and C1 for each power
spectra.

The library expect power spectra and not l(l+1)Cl/2pi or other combination.

The library really wants power spectra in microK^2.

1.5 Lensing likelihood

The behaviour of the lensing likelihood is similar to the one of the CMB likelihoods except that it does not have
nuisance parameters and expected the phiphi Cl as well as the TT Cl.

4 Chapter 1. Design choices

CHAPTER

TWO

INSTALLING

The package can be installed using two different tools, waf or make. Using waf, the installer will test for the different
dependencies and try to install them if they are missing. Using make, one would have to modify the Makefile file
for your particular computer and install the dependencies. Besides, when using make, no test of the availability of the
requisite will be made.

The package has a set of core utilities, consisting in the clik library with a C and F90 API, as well as the programs
clik_example_C and clik_example_F90 which allows to compute a log likelihood for a Cl and nuisance parameter
file, and also doubles as example of how to interface with the library in this two languages.

The package also have a set of optional utilities, consisting in a python wrapper of the library, along with a few python
scripts allowing to explore the content of likelihood files, and to manipulate them. Those tools will have a few more
requirements to be built.

Finally, when using waf, and provided that the optional python utilities can be installed, a wrapper to the wmap9
likelihood will also be installed.

2.1 Requisites

2.1.1 Mandatory requisites

modern c and fortran compilers (icc, gcc, ifort anf gfortran are ok) are absolute requisites. Gcc version must be >=
4.2 and gfortran version must be >=4.3.

To use the waf tool, one also need Python (>=2.5).

2.1.2 Mandatory requisites that can be installed when using waf

Those requisites will not be installed automatically when using make, and must be manually installed. ‘cfitsio‘_,
as well as blas and lapack distribution (preferably intel MKL on linux machine. Macos computers already have a
reasonnable parallelized blas/lapack that clik can use) are needed for the core functionalities of clik. If absent (or not
available in the correct flavor), they can be installed automatically using waf and the options described below.

2.1.3 Optional requisites

A python distribution including the header and library (if absent, this will not be installed automatically by waf), and
the pyfits (2.4<=version), numpy (version>1.1) and cython python package (version>1.12) are needed to provide the
(optional) clik python wrapper and tools. The three python package will only be installed automatically when using
waf if the python header and library are available on the system.

5

http://waf.googlecode.com
http://http://www.gnu.org/software/make/
http://python.org
http://http://www.stsci.edu/institute/software_hardware/pyfits/
http://numpy.scipy.org/
http://cython.org/

clik Documentation, Release 1.0

2.2 Install with waf

The library and executables must be installed with the ‘waf’ tool. It is distributed in the package. Please have a look
at the waf webpage.

The installer must first be configured using:

$> ./waf configure

This will test for the presence of all the required dependencies (as described above). Command line options are
available to help the configuration by setting the location of some of those dependency, and or chose between different
compiler options. An option can also be used to cause waf to try to download, compile and install for the user the
required dependencies that are not found by the automatic discovery system. For a complete list of options do:

$> ./waf configure --help

After this (possibly lengthy) configuration step, clik per-se can be compiled and installed with:

$> ./waf install

2.2.1 Simplest case

In the simplest case, we will assume that you want all the dependencies absent from the usual locations to be installed
automatically. Note that this translate into a rather slow clik library, since the lapack library will probably be compiled
from a simple, non-parallel, version of the lib. That being said , the simplest configuration (if slow) line would be:

$> ./waf configure --install_all_deps

followed by:

$> ./waf install

Note that the option --install_all_deps is more powerful than simply installing all the dependency, this will
be described in a latter section.

2.2.2 Simplest case with mkl

Using the automatically installed lapack library results in a slow clik library. One can solve easily this problem by
letting the configuration know about an existing mkl library. To do so the configuration line has to be changed into:

$> ./waf configure --install_all_deps \
--lapack_mkl=/PATH/TO/YOUR/MKL/ --lapack_mkl_version=MKL.VERSION

The /PATH/TO/YOUR/MKL/ can be replaced by ${MKLROOT} for most recent mkl installs. Otherwise, it has to
be a directory containing a lib and an include subdirectories. The MKL.VERSION can be any of 10.0, 10.1, 10.2,
10.3.

2.2.3 Simplest case with apple lapack

MacOS X has a standard parallelized lapack distribution. One can use it to accelerate clik. To do so the configuration
line has to be changed into:

$> ./waf configure --install_all_deps --lapack_apple

6 Chapter 2. Installing

http://waf.googlecode.com

clik Documentation, Release 1.0

2.2.4 (planck insider) I am installing on magique3

Use this:

$> /softs/python/2.7.2/bin/python waf configure \
--install_all_deps --cfitsio_prefix=/softs/cfitsio/3.24/
--lapack_mkl=/softs/intel/mkl/10.2.6.038 --lapack_mkl_version=10.2

and then:

$> ./waf install

See below for the other otions used here.

2.2.5 (planck insider) I am installing on ccin2p3

Use this:

$> ./waf configure --install_all_deps \
--lapack_mkl=/usr/local/intel/mkl/10.3.8/ --lapack_mkl_version=10.3

and then:

$> ./waf install

2.2.6 ADVANCED: Installing with a particular Python executable

It is possible to install clik with a python install different from the default one. For example if the default python
installation does not contains the required header and libraries. To do so, call waf this way:

$> /path/to/special/python waf configure

and then:

$> /path/to/special/python waf install

2.2.7 ADVANCED: Bypassing the default compilers

To bypass the c compiler detection, set the CC environment variable. To bypass the fortran compiler detection, set the
FC environment variable. Beware, you can only set the FC environment variable to either an intel fortran compiler or
a gfortran compiler.

Shortcuts for some classical cases are provided:

• --icc causes the installer to use icc as c compiler.

• --ifort causes the installer to use ifort as fortran compiler.

• --gcc causes the installer to use gcc as c compiler.

• --gfortran causes the installer to use gfortran as fortran compiler.

2.2.8 ADVANCED: Setting the architecture

The architecture (32 or 64bits) can be set using the --m32 or --m64 flags. 64bits is the default.

2.2. Install with waf 7

clik Documentation, Release 1.0

2.2.9 ADVANCED: Setting installation path

The installation path can be set using the --prefix=SOMEPATH option. Default is to install in the current directory.

2.2.10 ADVANCED: More on the automatic installation of dependencies

There are three levels of automatic installation. If one wants to always install the dependencies, one can use the
--force_install_all_deps:

$> ./waf configure --forceinstall_all_deps

If one wants to install only the dependencies that are not present in the usual location (or that are present, but not
compiled in a way suitable for clik), one can use the --install_all_deps option, already described above.
Since this option first tests for the presence of each library, it can be used to upgrade a clik install, avoiding to reinstall
everything.

Finally, each dependency can be installed on a dependency by dependency basis, using the --XXX_install
or --XXX_installifneeded options where XXX is the name of the dependency. The former install
all the time the dependency, the latter install it only if it is not found in the usual locations. In that
sense, --forceinstall_all_deps works as if all possible --XXX_install options has been set, and
--install_all_deps as if all --XXX_installifneeded options have been set.

One should also note that --forceinstall_all_deps and --install_all_deps are also unactivated on
a dependency by dependency basis if any of the --XXX_prefix, --XXX_lib, --XXX_include, or other de-
pendency specific options are present. In that case, the the XXX dependency, the configuration script will look in the
locations described by those option and if the package is not found will report an error.

2.2.11 ADVANCED: Setting the location of a library

The location of the library dependencies (gsl, hdf5, healpix, blas/lapack) must be known to the installer. By de-
fault, it will look for them in the classical system locations: /usr/lib, /usr/lib64, /usr/local/lib,
/usr/local/lib64 for the library, /usr/include and /usr/local/include for the include files. One
can change the lookup path on a library by library basis. If a given dependency, XXX, is installed on the system such
that its lib are in SOMEPREFIXPATH/lib and its include files in SOMEPREFIXPATH/include, setting the com-
mand line option --XXX_prefix=SOMEPREFIXPATH will allow the clik install system. If SOMEPREFIXPATH
is identical to the the install path of clik, this option can be replaced by -XXX_islocal.

If the library are at SOMEWEIRDPATH and the includes at SOMEDIFFERENTPATH, then setting the two options
--XXX_lib=SOMEWEIRDPATH --XXX_include=SOMEDIFFERENTPATH will allow the clik install system
to find them.

Finally, if the name of the library files differs from the usual ones one can set the option
--XXX_link=THELINKLINE.

Using these options allow to point the installer to a pmclib install in order to allow the linking of clik with pmclib.

2.2.12 ADVANCED: Special case: the mkl library

This option is only for advanced users. The blas/lapack distribution installed automatically is a very inefficient one. To
improve the performance of clik (especially the low-l pixel based likelihood), one is advised to use the MKL library,
which is fully supported and allow the use of shared memory computer architectures.

A special option is present to simplify the install using the intel MKL library: setting the option
--lapack_mkl=PATH_OF_THE_MKL_INSTALL together with --lapack_mkl_version=SOMEVERSION

8 Chapter 2. Installing

clik Documentation, Release 1.0

will allow clik to pick the correct set of libraries for the particular version of the mkl package (version 10.0, 10.1, 10.2
and 10.3 only). Setting this option will cancel the --install_all_deps option for the lapack dependency only.

On a MacOS X computer, one can use Apple provided lapack by setting --lapack_apple.

2.2.13 ADVANCED: Special case: WMAP likelihood

Clik can provide a wrapper to the wmap9 likelihood. It need to now where the sources of the likelihood are lo-
cated to compile against them. One must set the option --wmap_src=WMAP7SRCPATH or let the install system
download it for you by setting the option --wmap_install. Note that to actually use this likelihood, one must
also download the data files and prepare clik likelihood files from them. Look at Using WMAP9 likelihood. The
--install_all_deps and --forceinstall_all_deps options will automatically download the sources,
as if -wmap_install was set.

2.2.14 ADVANCED: Putting it all together

The following command:

$> ./waf configure --install_all_deps

will tell the clik install system to install all the possible external dependency in the current directory.

The following command:

$> ./waf configure --lapack_mkl=/opt/intel/mkl \ --lapack_mkl_version=10.2
--cfistio_prefix=/usr/local/cfitsio --cython_install

will tell the clik install system to install cython. The cfitsio library will be looked for in the unusual dir
/usr/local/cfitsio. /All the other dependency will be looked up in the classical locations. The blas/lapack
library will be the one from an mkl install located at –lapack_mkl=/opt/intel/mkl. Clik will be compiled in 64bit and
installed in the current directory.

2.2.15 ADVANCED: Best advanced choice

Use a mkl lapack install and let the other dependencies on auto install:

$> ./waf configure --install_all_deps \
--lapack_mkl=/opt/intel/mkl --lapack_mkl_version=10.2

This will use your mkl libraries from /opt/intel/mkl, test if numpy, cython and gsl are installed on your computer
(often the case) if not install them, and finally install all the other requirements (helpaix, hdf5 and its python wrapper).

2.3 Installing with make

The first lines of the Makfile file must be checked and modified before compiling. In particular, one must set,

• the location of the cfitsio library

• the location and version of the mkl library (or other lapack library)

• the location and list of library needed to link c with fortran

To build and install the core utilities, use the following command:

2.3. Installing with make 9

clik Documentation, Release 1.0

$> make install

To build and install the optional utilities, use the following command:

$> make install_python

2.4 Environment variables

Depending of your shell, a configuration file named clik_profile.sh of clik_profile.cshwill be installed
in the bin directory at the install location of clik. One can source it on the command line, or include it in its startup
configuration file to set the environment variable needed by clik. This tool is installed both bty waf and make.

10 Chapter 2. Installing

CHAPTER

THREE

INTERFACING THE LIBRARY WITH A C
EXECUTABLE

The following gives a description of the c API of the library, and how to correctly compile and link against it.

3.1 Compiling and linking

The program clik-config (installed in PREFIX/bin) spits out on the standard output the barbaric option and link line to
give to your prefered c compiler when compiling and linking against the clik lib.

The file click_example_c.c gives a simple example of the use of the c API. It is compiled and installed as
clik_example_C.

3.2 API - CMB likelihood

All codes calling clik functions must

include "clik.h"

The library can initialize more than one likelihood. Likelihood are represented by a variable (in the following, named
clikid) of type clik_object*.

3.2.1 Initialization

The library must be initialized by calling

clik_object* clik_init(char* hdffilepath, error **err);
The function returns a pointer on an object containing the definition of the likelihood. It expects two arguments,
hdffilepath a string containing the path to a likelihood file, and err a c structure allowing error tracking.
The error tracking system is provided by pmclib, please refer to its doc it for more info. If you don’t which to
use the error tracking system, set this argument to NULL. In this case, the library will only print out a message
and force the calling program to exit in case of an error.

3.2.2 Querying the likelihood object

void clik_get_has_cl(clik_object *clikid, int has_cl[6],error **err);
This function fills the array has_cl with flags describing which power spectra are needed by the likelihood

11

clik Documentation, Release 1.0

compute function (see The input of the compute function are multipoles of the power spectra and nuisance
parameters.). The first argument of the function must be the return value from a previous call to clik_init().
The last argument allows error tracking. It can be left to NULL, in which case no error tracking is performed
and the program exit with an explaining message in case of an error.

void clik_get_lmax(clik_object *clikid, int lmax[6],error **err);
This function fills the array lmax with the lmax value for each power spectra needed by the likelihood compute
function (see The input of the compute function are multipoles of the power spectra and nuisance parameters.).
The first argument of the function must be the return value from a previous call to clik_init(). The last
argument allow to track errors. It can be left to NULL, in which case no error tracking is performed and the
program exit with an explaining message in case of an error.

int clik_get_extra_parameter_names(clik_object* clikid, parname **names, error **err);
This function returns the number of nuisance parameters needed by the likelihood compute function (see The
input of the compute function are multipoles of the power spectra and nuisance parameters.) and fills with their
names the array *names. This array is an array of parname, who are char[_pn_size]. It is allocated by
the function and MUST be deallocated by the caller after use. The first argument of the function must be the
return value from a previous call to clik_init(). The last argument allow to track errors. It can be left to
NULL, in which case no error tracking is performed and the program exit with an explaining message in case of
an error.

3.2.3 Computing the log likelihood

double clik_compute(clik_object *clikid, double *cl_and_pars,error **err);
This function returns the value of the log likelihood for the parameter vector cl_and_pars. The content of
this vector is desribed in The input of the compute function are multipoles of the power spectra and nuisance
parameters.. The first argument of the function must be the return value from a previous call to clik_init().
The last argument allow to track errors. It can be left to NULL, in which case no error tracking is performed and
the program exit with an explaining message in case of an error. This function can be called as many time as the
user wants.

3.2.4 Cleanup

When a likelihood object is no more needed (i.e. when no more computation will be needed in the program), the
memory it uses can be cleaned up calling

void clik_cleanup(clik_object** pclikid);

The first argument of the function must be the pointer on a variable containg the return value from a
previous call to clik_init(). Upon return, the content of this variable will be changed to NULL.

3.3 API - lensing likelihood

All codes calling clik functions must

include "clik.h"

The library can initialize more than one likelihood. Likelihood are represented by a variable (in the following, named
clikid) of type clik_lensing_object*.

3.3.1 Testing whether a file contains a lensing likelihood

One can test whether a file contains a lensing likelihood by calling

12 Chapter 3. Interfacing the library with a c executable

clik Documentation, Release 1.0

int clik_try_lensing(char* hdffilepath, error **err);
Return 1 or 0 depending if the file hdffilepath constains a lensing likelihood. If the file does not exist or
cannot be read, an error us raised the usual way.

3.3.2 Initialization

The lensing likelihood must be initialized by calling

clik_lensing_object* clik_lensing_init(char* hdffilepath, error **err);
The function returns a pointer on an object containing the definition of the likelihood. It expects two arguments,
hdffilepath a string containing the path to a lensing likelihood file, and err a c structure allowing error
tracking. The error tracking system is provided by pmclib, please refer to its doc it for more info. If you don’t
which to use the error tracking system, set this argument to NULL. In this case, the library will only print out a
message and force the calling program to exit in case of an error.

3.3.3 Querying the lensing likelihood object

int clik_lensing_get_lmax(clik_lensing_object *clikid, error **err);
This function returns the lmax value for both clpp and cltt.

int clik_get_lensing_extra_parameter_names(clik_lensing_object* clikid, parname **names, error **err);
This function returns the number of nuisance parameters needed by the lensing likelihood compute function and
fills with their names the array *names. This array is an array of parname, who are char[_pn_size]. It is
allocated by the function and MUST be deallocated by the caller after use. The first argument of the function
must be the return value from a previous call to clik_lensing_init(). The last argument allow to track
errors. It can be left to NULL, in which case no error tracking is performed and the program exit with an
explaining message in case of an error.

3.3.4 Computing the log likelihood

double clik_lensing_compute(clik_lensing_object *clikid, double *cl_and_pars,error **err);
This function returns the value of the log likelihood for the parameter vector cl_and_pars. This vector must
have 2*(lmax_lensing+1) + number_of_lensing_extra_parameters elements. They are first the lensing_lmax+1
values of clpp, then the lensing_lmax+1 values of the cltt, the the extra parameter values. The first argument of
the function must be the return value from a previous call to clik_lensing_init(). The last argument
allow to track errors. It can be left to NULL, in which case no error tracking is performed and the program exit
with an explaining message in case of an error. This function can be called as many time as the user wants.

3.3.5 Cleanup

When a lensing likelihood object is no more needed (i.e. when no more computation will be needed in the program),
the memory it uses can be cleaned up calling

void clik_lensing_cleanup(clik_lensing_object** pclikid);

The first argument of the function must be the pointer on a variable containg the return value from a
previous call to clik_lensing_init(). Upon return, the content of this variable will be changed to
NULL.

3.3. API - lensing likelihood 13

clik Documentation, Release 1.0

14 Chapter 3. Interfacing the library with a c executable

CHAPTER

FOUR

INTERFACING THE LIBRARY WITH A
F90 EXECUTABLE

The following gives a description of the f90 API of the library, and how to correctly compile and link against it.

4.1 Compiling and linking

The program clik_f90-config (installed in PREFIX/bin) spits out on the standard output the barbaric option and link
line to give to your prefered c compiler when compiling and linking against the clik lib.

The file click_example_f90.f90 gives a simple example of the use of the f90 API. It is compiled and installed
as clik_example_f90.

4.2 API - CMB likelihood

All codes calling clik functions must

use clik

The library can initialize more than one likelihood. Likelihood are represented by a variable (in the following, named
clikid) of type type(clik_object).

4.2.1 Initialization

The library must be initialized by calling

subroutine clik_init(clikid, hdffilepath)
The subroutine sets the argument clikid, which is of type type(clik_object) to a handle on an object
containing the definition of the likelihood. It expects two arguments, hdffilepath a string containing the
path to a likelihood file. In case of error, the library will only print out a message and force the calling program
to exit.

4.2.2 Querying the likelihood object

subroutine clik_get_has_cl(clikid, has_cl)
This function fills the integer(kind=4), dimension(6):: has_cl array with flags describing
which power spectra are needed by the likelihood compute function (see The input of the compute function

15

clik Documentation, Release 1.0

are multipoles of the power spectra and nuisance parameters.). The first argument of the function must be
the return value from a previous call to clik_init(). In case of error the program exit with an explaining
message.

subroutine clik_get_lmax(clikid, lmax)
This function fills the array integer(kind=4), dimension(6):: lmaxwith the lmax value for each
power spectra needed by the likelihood compute function (see The input of the compute function are multipoles
of the power spectra and nuisance parameters.). The first argument of the function must be the return value
from a previous call to clik_init(). In case of error the program exit with an explaining message in case of
an error.

subroutine clik_get_extra_parameter_names(clikid, names, numnames)
This function sets integer::numnames to the number of nuisance parameters needed by the likelihood com-
pute function (see The input of the compute function are multipoles of the power spectra and nuisance parame-
ters.) and fills with their names the array character(len=256), dimension(numnames)::names.
This array is allocated by the function and MUST be deallocated by the caller after use. The first argument of
the function must be the return value from a previous call to clik_init(). In case of error the program exit
with an explaining message.

4.2.3 Computing the log likelihood

real(kind=8) function clik_compute(clikid, cl_and_pars)
This function returns the value of the log likelihood for the parameter vector cl_and_pars. The content of
this vector is described in The input of the compute function are multipoles of the power spectra and nuisance
parameters.. The first argument of the function must be the return value from a previous call to clik_init().
In case of error the program exit with an explaining message. This function can be called as many time as the
user wants.

4.2.4 Cleanup

When a likelihood object is no more needed (i.e. when no more computation will be needed in the program), the
memory it uses can be cleaned up calling

subroutine clik_cleanup(clikid)

The first argument of the function must be the return value from a previous call to clik_init().

4.3 API - lensing likelihood

All codes calling clik functions must

use clik

The library can initialize more than one likelihood. Likelihood are represented by a variable (in the following, named
clikid) of type type(clik_object).

4.3.1 Testing whether a file contains a lensing likelihood

One can test whether a file contains a lensing likelihood by calling

subroutine clik_try_lensing(hdffilepath, is_lensing);
On return the logical argument is_lensing is set to true or false depending whether the hdffilepath

16 Chapter 4. Interfacing the library with a f90 executable

clik Documentation, Release 1.0

argument points toward a lensing likelihood file. In case of error, the library will only print out a message and
force the calling program to exit.

4.3.2 Initialization

The library must be initialized by calling

subroutine clik_lensing_init(clikid, hdffilepath)
The subroutine sets the argument clikid, which is of type type(clik_object) to a handle on an object
containing the definition of the likelihood. It expects two arguments, hdffilepath a string containing the
path to a likelihood file. In case of error, the library will only print out a message and force the calling program
to exit.

4.3.3 Querying the lensing likelihood object

subroutine clik_get_lmax(clikid, lmax)
On return the integer argument lmax take as value the lmax of both the clpp and cltt. The first argument of
the function must be the return value from a previous call to clik_lensing_init(). In case of error the
program exit with an explaining message in case of an error.

subroutine clik_lensing_get_extra_parameter_names(clikid, names, numnames)
This function sets integer::numnames to the number of nuisance parameters needed by the likelihood com-
pute function (see The input of the compute function are multipoles of the power spectra and nuisance parame-
ters.) and fills with their names the array character(len=256), dimension(numnames)::names.
This array is allocated by the function and MUST be deallocated by the caller after use. The first argument of
the function must be the return value from a previous call to clik_init(). In case of error the program exit
with an explaining message.

4.3.4 Computing the log likelihood

real(kind=8) function clik_lensing_compute(clikid, cl_and_pars)
This function returns the value of the log likelihood for the parameter vector cl_and_pars. This vector must
have 2*(lmax_lensing+1) + number_of_lensing_extra_parameters elements. They are first the lensing_lmax+1
values of clpp, then the lensing_lmax+1 values of the cltt, the the extra parameter values. The first argument of
the function must be the return value from a previous call to clik_init(). In case of error the program exit
with an explaining message. This function can be called as many time as the user wants.

4.3.5 Cleanup

When a likelihood object is no more needed (i.e. when no more computation will be needed in the program), the
memory it uses can be cleaned up calling

subroutine clik_lensing_cleanup(clikid)

The first argument of the function must be the return value from a previous call to
clik_lensing_init().

4.3. API - lensing likelihood 17

clik Documentation, Release 1.0

18 Chapter 4. Interfacing the library with a f90 executable

CHAPTER

FIVE

INTERFACING THE LIBRARY WITH
PYTHON

This python library is only available when the optional python tools are installed either by make or waf.

5.1 API - CMB

The module clik contains the wrapper to the clik c library. It contains only one object called clik, which is initialized
with a string containing the path to a likelihood file.

import clik

clikid = clik.clik("clikidfile")

The has_cl, lmax and parameter names array (see The input of the compute function are multipoles of
the power spectra and nuisance parameters.) can be queried by simpliy reading the has_cl, lmax and
extra_parameter_names attributes of the object

has_cl = clikid.has_cl
print has_cl

A log likelihood is computed by calling the object with a list-like object (tuple, list of numpy.ndarray objects)
containing the vector of parameters as described in The input of the compute function are multipoles of the power
spectra and nuisance parameters..

loglkl = clikid(cl_and_pars)

The file click_example_py.py gives a simple example of the use of the python API. It is compiled and installed
as clik_example_py.

5.2 API - lensing

Similarly a lensing likelihood can be initialized by

import clik

clikid = clik.clik_lensing("clikidfile")

19

clik Documentation, Release 1.0

The lmax and parameter names array (see The input of the compute function are multipoles of the power spectra and
nuisance parameters.) can be queried by simpliy reading the lmax and extra_parameter_names attributes of
the object.

The log likelihood is computed by calling

loglkl = clikid(cl_and_pars)

cl_and_parsmust be a (lensing_lmax+1)+number_of_extra_parameters elements array. The first lmax+1 elements
must be the clpp, the next the cltt. Optionnaly if providing only lmax+1+number_of_extra_parameters the likelihood
will be computed using the fiducial cltt spectrum.

20 Chapter 5. Interfacing the library with python

CHAPTER

SIX

USING WMAP9 LIKELIHOOD

This utility is only available when the optional python tools are installed using waf.

If the sources for the wmap9 likelihood are available, one can also use this likelihood code along with the WMAP9
likelihood data file whithin clik. To do so, one must also create likelihood files that refers to the WMAP9 dataset.
The tool prepare_wmap allows to prepare this files. It needs a parameter file describing the location of the WMAP
data the description of the range of ells to use and a few flags. Example parameter files are present in the examples
directory. See for wmap_full.par that defines likelihood using all of the WMAP9 data for all ells.

prepare a file for calling the wmap full likelihood through clik

res_object = wmap_9_full.clik

ttmin = 2
ttmax = 1200
temin = 2
temax = 1200
use_gibbs = 0
use_lowl_pol = 1

wmap_data = /THE/PATH/TO/wmap_likelihood_v5
cl_save = wmap_9_full.cltest

21

clik Documentation, Release 1.0

22 Chapter 6. Using WMAP9 likelihood

CHAPTER

SEVEN

USING ACTPST LIKELIHOOD

This utility is only available when the optional python tools are installed either by make or waf.

Source for the actspt likelihood described in (CITE) are included in the clik package. To prepare a likelihood file, one
has to run the too prepare_actspt using a parameter file similar to

prepare a file for calling the wmap full likelihood through clik

res_object = actspt.clik
actspt_data = path/to/the/data

#optional
l ranges for the act data
lmin11 = 1000
lmin12 = 1500
lmin22 = 1500
lmax11 = 10000
lmax12 = 10000
lmax22 = 10000

#lmax used for the CMB
tt_lmax_mc = 5000

add or remove datasets
use_act_south = 1
use_act_equa = 1
use_spt_highell = 1

set to one to copy the data in the clik file, 0 to simply refer to it.
include = 1

23

clik Documentation, Release 1.0

24 Chapter 7. Using actpst likelihood

CHAPTER

EIGHT

PLAYING AROUND WITH LIKELIHOOD
FILES

8.1 Computing a log likelihood from the command line

The example codes, clik_example_C, clik_example_f90 and clik_example_py allow to compute a the log likelihoods
for any numbers of files containing Cls andforeground parameters.

clik_example_C usage:

clik_example_C lkl_file.clik [clfile1 ...]

lkl_file.clik is the likelihood file. The clfile1 ... files must be ascii and contains Cls from 0 to the lmax
(included) of the likelihood file, followed by the nuisance parameter values in the order shown when using clik_print
or using of the the query function (for example, in c :cfunction:‘clik_get_extra_parameter_names‘).

The program clik_example_py is only available when the optional python tools are installed either by make or waf.

8.2 Printing info about a file

This utility is only available when the optional python tools are installed either by make or waf.

The tool clik_print displays some information on the content of a likelihood files. The range of modes for each power
spectrum, the list of extra parameters, and for each component of the full likelihood, the same info.

Usage:

clik_print somelikelihoodfile.clik

somelikelihoodfile.clik is a likelihood file.

Example output:

$> clik_print ../release/clik_7.4/CAMspec_v6.2TN_2013_02_26.clik/

clik version 5869

CAMspec e61cec87-3a37-43ca-8ed1-edcfcaf5c00a
Checking likelihood ’../release/clik_7.4/CAMspec_v6.2TN_2013_02_26.clik/’ on test data. got -3910.03 expected -3910.03 (diff -2.09184e-10)

clik lkl file = ../release/clik_7.4/CAMspec_v6.2TN_2013_02_26.clik/

number of likelihoods = 1
lmax (TT = 2500)
number of varying extra parameters 15

25

clik Documentation, Release 1.0

A_ps_100
A_ps_143
A_ps_217
A_cib_143
A_cib_217
A_sz
r_ps
r_cib
n_Dl_cib
cal_100
cal_143
cal_217
xi_sz_cib
A_ksz
Bm_1_1

lkl_0
lkl_type = CAMspec
unit = 1
TT = [50 , 2500]
number of extra parameters = 15 (’A_ps_100’, ’A_ps_143’, ’A_ps_217’, ’A_cib_143’, ’A_cib_217’, ’A_sz’, ’r_ps’, ’r_cib’, ’n_Dl_cib’, ’cal_100’, ’cal_143’, ’cal_217’, ’xi_sz_cib’, ’A_ksz’, ’Bm_1_1’)

8.3 Modifying the content of a likelihood file

This utility is only available when the optional python tools are installed either by make or waf.

The tools clik_join and clik_disjoin allow to either join toghether one or more likelihood files in a single one, or cut
a likelihood files into as many files as it has components.

clik_join usage:

clik_join lkl_file_1.clik lkl_file_2.clik [lkl_file_3.clik ...] result_lkl_file.clik

lkl_file_1.clik, lkl_file_2.clik... are input likelihood files. The resulting file
result_lkl_file.clik defines a likelihood file so that the log likelihood a Cl (+extra parameters) is the
sum of the log likelihood of each input files.

clik_disjoin usage:

clik_disjoin lkl_file.clik

The input file is lkl_file.clik is split in as many likelihood as it has component. Each likelihood is saved in its
own file, named lkl_file.lkl_X.clik where X is a number between 0 and the number of components.

8.4 Dealing with likelihood files with external data

This utility is only available when the optional python tools are installed either by make or waf.

This is only valid for likelihood files containing only one component and when this component is either a BOPIX or
WMAP likelihood. In both cases, the likelihood relies on external data. This data is either included in the file (as a big
tarfile) or install somewhere in the file system. the tools clik_extract_external and clik_include_external allows to
go from one choice to the other. It is either, when distribution, to include the external data whithin the file, and more
efficient to run with the external data installed somewhere in the file system.

clik_extract_external usage:

26 Chapter 8. Playing around with likelihood files

clik Documentation, Release 1.0

clik_extract_external parameterfile

Example parameter file

input_object = wmap_7_full.clik # input likelihood file. Data is included
install_path = /data/wmap_likelihood_data # where to install the data
res_object = wmap_7_full.external.clik # output likelihood file. Data is no more included

clik_include_external usage:

clik_include_external parameterfile

Example parameter file

input_object = wmap_7_full.external.clik # input likelihood file. Data is installed somewhere
res_object = wmap_7_full.clik # output likelihood file. Data is included

8.5 Extracting the test Cl from a likelihood file

This utility is only available when the optional python tools are installed either by make or waf.

clik_get_selfcheck usage:

clik_get_selfcheck lkl_file.clik clfile

lkl_file.clik is the likelihood file. clfile is the cl+nuisance parameter array used to compute the selfchek
displayed at each initialization of the likelihood. Same format as the one needed for clik_example_C

8.6 Computing a slice through a log likelihood from the command
line

This utility is only available when the optional python tools are installed either by make or waf.

One can quickly compute conditionals through a likelihood along the direction of one of the nuisance parameter using
clik_explore_1d.

clik_explore_1d usage:

clik_explore_1d parfile

parfile is a parameter file similar to:

slice

#lkl
input_object = CAMspec_v6.2TN_2013_02_26.clik

#data for the other dimensions. Same format as for clik_example_C.
initdata = bestfilcl.camspec

#name of the varying parameter
parameter = r_cib

#begin and end values
beg = -1

8.5. Extracting the test Cl from a likelihood file 27

clik Documentation, Release 1.0

end = 1.5

#number of computations
step = 300

#ascii file that will hold the result as a 2d array, parameter value, lkl value
res = myresult.txt

28 Chapter 8. Playing around with likelihood files

CHAPTER

NINE

INDICES AND TABLES

• genindex

• modindex

• search

29

clik Documentation, Release 1.0

30 Chapter 9. Indices and tables

INDEX

C
clik_cleanup (C function), 16
clik_get_extra_parameter_names (C function), 16
clik_get_has_cl (C function), 15
clik_get_lmax (C function), 16, 17
clik_init (C function), 15
clik_lensing_cleanup (C function), 17
clik_lensing_get_extra_parameter_names (C function),

17
clik_lensing_init (C function), 17

R
real (C function), 16, 17

31

	Design choices
	A likelihood is entirely defined by a likelihood file.
	The library computes an approximation of the log likelihood
	The input of the compute function are multipoles of the power spectra and nuisance parameters.
	Pitfalls
	Lensing likelihood

	Installing
	Requisites
	Install with waf
	Installing with make
	Environment variables

	Interfacing the library with a c executable
	Compiling and linking
	API - CMB likelihood
	API - lensing likelihood

	Interfacing the library with a f90 executable
	Compiling and linking
	API - CMB likelihood
	API - lensing likelihood

	Interfacing the library with python
	API - CMB
	API - lensing

	Using WMAP9 likelihood
	Using actpst likelihood
	Playing around with likelihood files
	Computing a log likelihood from the command line
	Printing info about a file
	Modifying the content of a likelihood file
	Dealing with likelihood files with external data
	Extracting the test Cl from a likelihood file
	Computing a slice through a log likelihood from the command line

	Indices and tables
	Index

