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Abstract 

State Machine Compiler (SMC) takes as an input a Finite State Machine (FSM) described in a 

textual file, <fileName.sm> and generates a state pattern classes implementing that FSM in one of 

the fourteen supported programming languages, as May, 2008, then it integrates the FSM with a 

specified application class. The supported target languages are: 

C C++ C# [incr Tcl] 

Groovy Java Lua Objective-C 

Perl PHP Python Ruby 

Scala VB.net   

SMC is a Java based tool and one of its aims is to increasingly target more programming 

languages at the same time keeping its syntax and use light and simple. The SMC syntax is the 

same with all supported languages. SMC also defines several transitions types, including but not 

limited Default transitions, push/pup transitions, as well as, transition arguments, guards, and 

actions. Likewise, SMC has a Default state and state’s Entry/Exit actions. SMC is not a “real 

programming language compiler”; instead, it reads its file verbatim and according to the specified 

target language, it generates the code following the powerful pattern of state pattern.     
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Preface 

Specifically, this report tries to give some information regarding State Machine Compiler (SMC). 

Likewise, the report, generally, discusses some basic aspects of finite state machines (FSMs), as 

well as their implementation concepts. The report provides simple explanation enhanced with 

some straightforward examples. It should be mentioned that this report discusses SMC aspects 

taking in the consideration, primarily Java as a target language. However, SMC is intended to 

support multiple programming languages with minor changes. The SMC’s syntax is the same 

regardless of the specified target language. In May 20, 2008, while working on this report, a new 

version of SMC has been released (SMCv.5.1.0). The major updates in this release are: adding 

support to PHP and Scala programming languages, adding a new transition type: jump transition, 

fixing some errors. This release is built on Java 5. The next future planned version (SMCv.6.0.0) 

will be built on Java 6 and will include two distinguish loopback transitions: internal and external. 

The SMC version that is used in this report is SMCv.5.0.2, released in January 14, 2008.   

SMC main website, http://smc.sourceforge.net provides more rich details regarding SMC and its 

implementation for all supported programming languages.  
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Chapter 1 

Introduction 

1.1 Introducing SMC Concepts 

The State Machine Compiler, SMC [1] is an open source Java project hosted on sourceforge.net 

(http://smc.sourceforge.net).  SMC mates finite state machines (FSMs) with objects. It generates 

state pattern code representing FSM for individual objects, such that it allows defining a state 

machine in one textual file which must have (.sm) ending and it represents the states an object can 

be in, as well as transitions and actions. Figure 1 demonstrates graphically how SMC performs 

[1].  

 

Figure 1: SMC process 

SMC’s .sm file that should be written is basically a state transition table [1], STT (see state 

machines and diagrams basic concepts section for more details on STT). In other words, the state 

machine logic is grouped inside  one or more table or block named “map” in which each state is 

defined along whit its transitions, next state, and actions. The .sm file must have only one map 

that identifies the starting point of the state machine. That is to say, only one map declares the 

start or initial state of a FSM, but the .sm file may have other maps without having the start state. 

From this descriptive .sm file, SMC generates state pattern classes in one file. Simply stated, the 

generated file contains among others the context class and a class for each state, (the generated 

code will be discussed later in the SMC generated code section). Likewise, the .sm file must 
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declare a class that will be integrated with the generated classes, namely the generated context 

class. The declared class which is referred to as “<AppClass> – application class” is the class that 

a programmer writes in order to interact whit the generated context class (or FSM). The generated 

context class will take the same name as the <AppClass> class name specified within the .sm file 

but appended with the word “Context”. As well, the generated file that contains all generated 

classes will have a name that is derived from the .sm file name. Therefore, the names of the .sm 

file and the <AppClass> class specified in it are required to be the same. This applies, specifically 

when generating Java code. The reason for this is that Java compiler requires a certain class name 

to be defined in a file that has the same name as the class name. Since SMC is a Java based tool, 

it follows Java in the naming principles (see The SMC syntax and use section for further details). 

Also, the <AppClass> class should define action methods whose names correspond to the actions 

names in the FSM. These methods should be accessible to the generated context class; hence, the 

methods should be declared as public or package when generating code for Java if in the same 

package, as well as, the methods should have a void return type, but if there is a return value, 

SMC ignores it. The interacting mechanism of the FSMs; specifically the generated context class, 

to the application class, the <AppClass> is very simple as follows:  

- Define and instantiate an instance of the generated context class in the application class. 

- Issue transitions by invoking appropriate transition method on the context class. 

Hence as mentioned above; on one hand, the generated context class defines transition methods 

according to the defined transitions in the .sm file. On the other hand, the application class 

<AppClass> defines action methods whose names must correspond to the actions names in the 

.sm file. Figure 2 [1] shows the interaction between the generated context class and the 

application class.  
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Figure 2: Interaction between the context class and the application class 

The generated context class calls action methods on the application class, in turn; the application 

class invokes transition methods on the context class.   

Further, SMC [1] handles unexpected events such that it defines default state and transitions. In 

addition to the simple and default transitions, SMC also defines a jump, loopback and push/pop 

transitions. As a convention of state machines, SMC’s transitions may have arguments, guards 

and actions. And, states may contain Entry and Exit actions. These concepts will be introduced 

subsequently in the following sections using some examples. 
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Chapter 2 

Finite State Machines and Diagrams  

2.1 Basics 

State machines can be seen in several real world objects [2]; for example, vending machines, 

washing machines, digital watches and many other electronic devices. State machines simplify 

implementation of programs that handles input events and states. Specifically, state machines are 

most useful when developing GUI applications and communication protocols; for instance. State 

machines when appropriately applied, result in more reliable, less coupled and easy maintained 

code. So, what is a state machine? Simply stated, “a state machine is a system with a set of unique 

states” [2]. In state machines there are special states; that is, one state is called initial state from 

which a state machine initializes and one or more of other states are called final states where a 

state machine exits. Moving from a state to another is done by transitions; thus, transitions 

connect system states. Each transition represents an input event. The event triggers the transition 

when it occurs and causes to move from the current state to the new next state with some 

exceptions such remaining in the same state, as will be illustrated subsequently in the next 

sections. State machines are often drawn as diagrams [2]. Consider the following Figure 3 [3] that 

shows a simple state diagram describing FSM for a subway turnstile. This example will be used 

to introduce the implementation of state machines, as well as SMC aspects. It is helpful to state 

that Figures and examples in the report are colored. That is, Black is for user defined states and 

maps names, Red is for transitions names, Purple is for actions names and Blue is for SMC 

keywords and symbols. It is also helpful to discuss some basic concepts of state machines, 
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diagrams and their implementation techniques regarding to SMC related concepts, as it is 

presented in the next section. Simple turnstile FSM diagram 

 

Figure 3: Simple turnstile FSM diagram 

In state diagrams, the rounded rectangles represent states [3]. There are two states in Figure 3, 

Locked and Unlocked. The black circle that points to the Locked state is called the initial pseudo 

state. It indicates that the Locked state is the actual start state for this FSM. Transitions are 

represented by arrows between states. Each transition has a label of two parts separated by a 

slash. The first part represents the event name that triggers the transition. The second part 

represents the action name that to be invoked once the transition is triggered. A transition may be 

followed by an argument and guard. This will be discussed later in the SMC syntax and use 

section. The subway turnstile state diagram shown in Figure 3 can be described as follows: 

- Turnstile is initially in the Locked state. 

- When a Coin event occurs in the Locked state (a user inserts a coin), the turnstile 

transitions to the Unlocked state and the Unlock action is performed,  
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- While in the Unlocked state, if the user passes through the turnstile, hence, the Pass 

event occurs, then the turnstile transitions back to the Locked state and the Lock action 

is called.  

- If the Pass event occurs while the turnstile is in the Locked state (perhaps some 

violation is taken place in this case), then the turnstile remains in the Locked state; thus 

loopback transition, and the Alarm action is performed. 

- If the Coin event occurs in the Unlocked state (the user inserts extra coin,), then the 

turnstile sticks in the Unlocked state (loopback transition) and the Thankyou action is 

performed.   

The last two transitions are loopback transitions and they can be viewed as unnatural transitions. 

Because, the events (Coin and Pass, normal events) that triggers these transitions happens to 

occur in incorrect time or state. 

State machine diagrams provide a powerful, clear and easy way to reason about the completion 

and behavior of a desired system, such that unexpected events are easily discovered and handled.  

As another representation, the subway turnstile state diagram in Figure 3 can be also described as 

a state transition table STT, (Table 1) as follows [3, 4]: 

Current State Event Next state Action 

Locked Coin Unlocked Unlock 

Locked Pass Locked Alarm 

Unlocked Pass Locked Lock 

Unlocked Coin Unlocked Thankyou 

Table 1: State transition table 

An STT representation is a data structure table [3, 4]. It provides clear and concise 

information, such that it can be easily interpreted and understood. The 16 words in the 
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Table 1contain all the logic of the in question FSM. As it is shows, each row depicts a 

transition. The first row, for example, can be interpreted as follows: “If we are in the 

Locked state and get a coin event, we go to the Unlocked state and invoke the unlock function.”  

2.2 Implementing Finite State Machines 

There are several ways to implement finite state machines [3, 4, and 5]. The common way is to 

use nested switch case statements or If-then-else statement. State pattern is another effective 

choice to implement FSMs [3, 4, and 5].  

2.2.1 Implementing Finite State Machines Using Nested Switch Case Statements 

or IF Then Else Statements 

The following Table 2 shows [3, 4] the implementation of FSM in Figure 3 using nested switch 

case statements. 
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Table 2: Nested switch case statements implementing turnstile FSM 

The nested switch case statement in Turnstile class [3, 4] divides the code into “four mutually 

exclusive cases” each case matches a transition (event) in the FSM. That is, each case checks the 

event and accordingly transitions to the next state, and calls associated action. This approach is 

suitable and efficient when implementing simple finite state machines. In that the states and 

events are grouped in one place which eases visualizing and understanding the state machine 

logic. Nevertheless, this technique becomes complex for larger FSMs. Since nested switch case 

statements centralize checking for each state and event, the code gets lengthy and becomes 

difficult to read and maintain, thus, error prone. In the same manner [4, 5], this situation applies 

to the implementation of FSMs using if then else statements. 



 

 17 

2.2.2 Implementing Finite State Machines Using State Pattern 

State pattern “is to allow an object to change its behavior when its internal state changes” [6]. 

“The object will appear to change its class”. Simply stated, an object can have different 

states and its behavior depends on its present state, as well each state leads to a known 

next state [5]. Generally, state patter is used in any application where objects behavior is 

based on their states; for example, GUI applications, communication protocols, and 

electronic devices applications [5]. In essence, state patter is a suitable way to implement 

state machines since state machines are used to describe objects behavior according to 

their states. UML class diagram in the following Figure 4 shows the structure of the state 

pattern [6]. 

 

Figure 4: State pattern architecture 

  As it is shown in Figure 4, the architecture primarily consists of three classes [5, 6]: 

- Context class: is a compartment holding all states and maintaining the current 

state (an instance of a ConcreteState class). The application will interact with this 

class. 
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- State class: is an abstract super class for concrete sate classes. The reference of 

this class (“state”, as shown in the Figure) will be used in the context class to 

delegate and point to the current state. 

- ConcreteState classes: implement the behavior associated with states of Context. 

To put it simple, in state pattern each object state is represented by a concrete class which eases 

adding new states and extending existing ones. State pattern conforms to the “Open-Closed 

Principle (OCP); that is, software entities should be open for extension but closed for 

modification” [1]. Besides, it can be easily seen that state pattern takes advantage of 

polymorphism [7].  

Figure 5 shows [3] the use of state pattern to implement subway turnstile state machine example 

described previously in Figure 3Error! Reference source not found.. 

 

Figure 5: Turnstile FSM in state pattern 

As it is shown in the Figure 5, Turnstile class implements the actions for Turnstile FSM (Lock, 

Unlock, Alarm, and Thankyou). This, in terms of the SMC concepts, is the application class; 
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<AppClass> (mentioned earlier in the introduction section, that a programmer should write to 

interact with the SMC generated code (FSM)). However, In SMC the application class does 

not inherit from the TurnstileFSM class, as will be illustrated subsequently. TurnstileFSM 

class implements the transitions (coin, pass) and it contains a reference to the generated 

TurnstileState interface. The reference will be used to delegate TurnstileFSM methods to their 

matches in TurnstileState. TurnstileFSM class corresponds to the context class in state pattern 

structure. In terms of SMC; however, TurnstileFSM class is divided into two classes. That is, 

the generated context class that consists of transitions methods and it is used to interact 

with the application class <AppClass>, and the FSMContext class which is not generated 

but used by SMC “compiler”, as will be discussed later. The TurnstileState interface acts as a 

place holder (it is equivalent to the abstract class named (State) in Error! Reference source not 

found. that shows the architecture of state pattern. Finally, there are two generated subclasses 

TurnstileState: LockedState and UnlockedState. Those correspond to the concrete classes in state 

design pattern. For example, if the FSM is in the Locked state, then TurnstileFSM will point at 

the LockedState and if a coin event occurs, the coin method in TurnstileFSM will be invoked this 

will delegate to the coin method of TurnstileState interface, which in turn will cause passing 

down to the coin method of LockedState. This method will invoke setState ( ) method on the 

TurnstileFSM class and then will call the Unlock method on TurnstileFSM class which 

TurnstileFSM class inherits from Turnstile class. 

2.3 SMC Motivation 

State pattern reduces the complexity of implementing various states of an object such that it 

employs the separation of behavior and the logic of state machines [3]. In Figure 5, all the logic is 

contained in the TurnstileState hierarchy and all the behavior is contained in the Turnstile 
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hierarchy. So, such implementation is easily extended, as if there is a need to add a new class 

without modifying existing code. The behavior can be preserved and the logic can be changed 

separately and vice versa. On the contrary, the disadvantages of state design pattern are, the logic 

of the state machine is deployed in several classes (states), so that it cannot be visualized easily. 

Also, writing a class for each state is a hard and repetitive work.  

Overcoming these obstacles and taking the advantage of state pattern efficiency [1], was the 

motivation to develop SMC. That is to say, first SMC describes state machine in one place, (.sm 

file), so the logic of FSM can be easily visualized. Second, SMC generates state pattern classes, 

so there is no need to manually write a class for every state. What is more, Since SMC generates 

code that interacts with a written application class <AppClass>, then, there is no need to modify 

or maintain the generated code. The main concern is to write and maintain the application class, 

as well as the SMC textual file (.sm file). The .sm file is simple in that it represents a one or more 

map; in other words, a state transition table. If SMC file contains multiple maps, then each map is 

basically a state transition table. 

Charles W. Rapp, the creator and owner of SMC SourceForge project [1], is currently developing 

and maintaining SMC project along with other contributes. Charles’s SMC was derived from Bob 

Martine’s original state machine compiler. Charles W. Rapp has added many features to Bob 

Martin’s initial state machine compiler; to enumerate some, (arguments, transition guards, 

push/pop transitions and default transitions). Since then several versions of SMC have been 

released.  Next chapter introduces the syntax and use of SMC. 
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Chapter 3 

SMC: Use and Syntax 

3.1 SMC in Nutshell  

On the whole, the following steps summarize how to use SMC in order to generate state pattern 

classes for state machines [1]: 

1. Write the .sm file that describes the state machine. 

2.   Compile the file by running SMC to generate state pattern classes. 

3. Write the application class <AppClass> to implement the actions. 

4. Interact with the generated code (FSM) by calling transitions methods on the generated 

context class. 

5. There is no need to change programmer’s written code or to inherit any generated state 

machine classes.   

Recall the state diagram for subway turnstile introduced in Figure 3which is shown below, too 

[3]. It will be used to elaborate the syntax and layout of SMC file. 

 

Figure 6: (Figure 3 Repeated) Simple turnstile FSM diagram 

SMC syntax is simple, such that it resembles a state transition table STT; for example, the 

following Table 3 shows Locked state along with its transitions, next state and actions. 

Pass / Lock 

Coin / Thankyou 

Locked Unlocke

d 

Coin / Unlock 

Pass / Alarm 
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Table 3: Simple SMC state syntax 

This SMC code represents a state definition which includes its transitions, next state and actions. 

The state definition is placed inside a map block. Here, Locked represents the current state, Coin 

is the transition, Unlocked is the next state and Unlock ( ) is the action which is placed inside the 

braces. As well Pass is another transition defined in Locked state, “nil” is the keyword used to 

indicate that this transition is loopback transition; hence, the end state is the current state (Locked 

state). Finally, Alarm ( ) is the action. 

The following tables, Table 4 and Table 5 [1, 4] demonstrate the basic syntax of the SMC textual 

file and how it interacts with the application class. Table 5 has more details explaining SMC file. 

 

 

 

 

 

 

 

 

Locked  

{ 

Coin   Unlocked   {Unlock ( ) ;} 

Pass   nil {Alarm ( ) ;} 

} 
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Table 4: SMC file syntax with application class 
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Table 5: SMC file syntax with explanation comments 
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The verbatim block may only be used once in the .sm file and it must be placed at the top of the 

file before any SMC statement; however, comments may be used before the verbatim section. 

Additionally [1], one can import namespaces or classes in the .sm file using %import keyword 

placed at the top of the file; for example,  %import java.awt.event.* (without the semicolon at 

the end of line). Also, fully qualified class names are accepted for some target languages within 

%class keyword; for instance, %class com.MyProject.AppClass (for Java, C# and VB.net) and 

%class::MyProject::AppClass (for C++ and Tcl). Details on various SMC syntax and keywords 

will be discussed subsequently. 

3.2 SMC Requirements  

(The SMC 5_0_2 version released in January 14, 2008 is used in this report [1]). SMC is a java 

based tool [1]. Therefore, SMC requires Java 1.5.0 (JRE-standard edition) or later to be installed 

and “javac”, “java” and “jar” are in the PATH environment variable. Then, SMC can be 

downloaded, as open source software from http://smc.sourceforge.net. SMC package contains, 

among others, the executable Smc.jar (“SMC’s Compiler”) and statemap.* (SMC’s libraries), the 

“*” refers to multiple target programming languages endings; to mention some, statemap.jar for 

Java and statemap.h for C++ and statemap.dll for VB.Net. The statemap library is used only by 

SMC generated code. Programmer’s hand-written code (specifically AppClass – application 

class) has no use of this library. The full path to the …/Smc/bin (which contains smc.jar) should 

be added to the PATH environment variable, and also the full path to statemap may be added to 

the CLASSPATH environment. The SMC installation is quite simple such that it needs only to 

extract SMC zipped package and place it in the preferred directory taken in the account adding 

the full paths mentioned above. Up to date, SMC has no Eclipse plug in. Next section introduces 

how to compile SMC’s .sm file and various command line options. 
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3.3 SMC Compiling  

SMC’s command line basically takes the following arguments [1]: 

Java –jar smc.jar –{target language} -{options} {sm file name}.sm 

 The options allow specifying some control on the generated code. To illustrate: 

 smc.jar: represents the SMC “compiler”, so its directory should be specified  

 {sm file name}.sm : the (.sm) file must be supplied as the last argument. 

 – {target language}: one should specify which target language to generated code for. 

Since SMC supports generating code in several  programming languages, one of the 

following languages (SMC.V.5_1_0) should be specified: 

-c: generates C code.  

-c++: generates C++ code.  

-csharp: generates C# code.  

-groovy: generates Groovy code.  

-java: generates Java code.  

-lua: generates Lua code.  

-objc: generates Objective-C code.  

-perl: generates Perl code.  

-python: generates Python code.  

-ruby: generates Ruby code.  

-tcl: generates [incr Tcl] code.  

-vb: generates VB.net code. 

-php: generates PHP code. 

-scala: generates Scala code. 

-{options}: 
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 -table: generates an HTML table describing the FSM. 

 -graph: generates GraphViz.dot file.  

 -glevel: (used only combining with –graph option) determines the details representation 

that will appear in the GraphViz diagram. It takes Integer value from 0 for least details to 

2 for most details as follows: 

-glevel 0: is for least detail; generates state names, transition names and pop transition     

nodes only.  

-glevel 1: generates all of the –glevel 0 plus transition guards and transition actions.  

-glevel 2: generates all of the –glevel 0 and –glevel 1 plus state entry and exit actions, 

transition parameters, pop transition arguments and transition action arguments. 

 -sync: (used only with the -java, -groovy, -vb and –csharp) causes to add synchronized 

keyword to the transition methods declarations in the context class as for Java and 

Groovy implementations. For VB.Net and C#  implementation,  –sync causes to 

encapsulate the transition method’s body in Synclock  Me, End Synclock block, and 

lock(this) block respectively. Hence, -sync insures thread safety in these specific 

supported languages.  

 -help: prints SMC's command line options.  

 -version: outputs the version of SMC.  

 -verbose: produces verbose messages during compilation.  

 -suffix: allows to specify the suffix for the generated file name than the default one.  

 -noex: causes not to generate exception handling code. (Used only with the -c++); 

Generates assert( ) rather than thrown exceptions in case there are unhandled errors; for 

instance, when an action yields a transition from within a transition. SMC, even when 
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using -noex, still generates try/catch/rethrow blocks in order to protect the FSM against 

application thrown exceptions.    

 -nocatch: causes not to generate try/catch/rethrow blocks.  

 -cast: (used only with the -c++), sets casting operator. The allowed C++ cast operators 

are: dynamic_cast (default), static_cast and reinterpret_cast. For instance –cast can be 

used as follows: -cast static_cast    

 -d: determines the output directory for the generated code. By default the generated code 

is the same directory as the (.sm) file. When specifying a particular directory, the 

directory must be accessible from the current working directory and writeable. 

 -headerd: (used only with the -c, -c++ and -objc options.), specifies output directory for 

(.h) generated files. If neither -d nor –headerd is specified, then (.h) files are placed in 

the same directory as the (.sm) file.  

 -g: causes to add debugging output to the generated code. Yet, this output is not 

generated unless turned on at run time. To do so; for example in Java: 

_state_machine.setDebugFlag (true); where _state_machine is the FSM instance. By 

default the debugging output is placed in the standard error; for instance, in Java: 

(System.err), but this can be changed as follows: 

_state_machine.setDebugStream(java.io.PrintStream).     

 -nostreams: (used only with the -c++ and -g options.),  causes the generated code  not to 

use IOStreams for debugging output, but the application must provide subroutines or 

macros to handle such situations.  

 -serial: used when persisting SMC’s finite state machines, as will be discussed in the 

persistence section.  

 -reflect: used with reflection, further details are presented in the reflection section.  
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Locked Unlocked 
Coin / Unlock 

Locked  

{ 

Coin Unlocked {Unlock ( ) ;} 

} 

 

 

 -return: causes SMC not to exit. 

3.4 States and Transitions 

A state and transition names must have the form "[A-Za-z_][A-Za-z0-9_]*" [1] (see Appendix A 

for SMC EBNF grammar [1]).  SMC defines several types of transitions [1], namely, standard or 

simple, jump, loopback, push, and pop and default transitions. A transition definition includes 

four parts with some exceptions according to the transition type, generally the parts are: 

- The transition’s name, which may be followed by a comma-separated argument in parentheses. 

- The transition may have a guard. 

- The next or end state of the transition.  

- The transition may include actions which represent the first mating between FSM and 

application class <AppClass> that defines actions methods. 

3.4.1 Simple Transition 

Simple transitions are standard transitions that lead form current state to new next state. Figure 7 

shows a snippet of turnstile FSM describing a simple transition and  

 

Table 6 shows the equivalent SMC code. 

 

Figure 7: Simple transition 
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Locked 

Pass / Alarm 

Table 6:  SMC code for simple transitions in Figure 7 

3.4.2 Jump Transition 

In May 20, 2008, SMC new version (SMC_5_1_0) has been released with some updates, 

including Jump transition [1]. The Jump transition is similar to the Simple transition in syntax 

and use and it is intended to be used in augmented transition network (ATN) [1]. The augmented 

transition network (ATN) [1, 8] is an FSM used to parse sentences in natural language 

processing. ATNs include transition guards, push/pop transitions, default transitions and 

backtracking transition [1]. In essence, SMC concepts come from ATN [1]. Further information 

on ATNs can be found in [1, 8]. 

3.4.3 Loopback Transition 

Loopback transitions [1] are simply used when there is a need to remain in the same state. The 

keyword “nil” is used to indicate that the next state is the current state; thus, loopback transition. 

Alternatively, the current state name can be used instead of “nil”, except in the “Default state” 

where “nil” keyword is required; the reason for that is because “Default” as a keyword, is used to 

define a “Default” state and transition, so it cannot be used to indicate the loopback transition. 

More on Default state and transitions will be discussed in the Default state and transitions 

sections. (The next planned SMCv.6.0.0 will distinguish between using nil and state name for 

loop backing, more on this at the end of this section). Figure 8 shows a portion of turnstile FSM 

representing a simple loopback transition and Table 7 shows the equivalent SMC code. 

 

 

Figure 8: Loopback transition 
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Locked  

{ 

Pass nil {Alarm ( ) ;} 

} 

 

// or  

 

Locked 

{ 

Pass Locked {Alarm ( ) ;} 

} 

 

 

 

 

 

 

 

 

 

 

Table 7: Loopback Transition 

It should be mentioned that SMC currently makes no deference when using the keyword “nil” or 

the state name. However, the next planned release of SMC (SMC.v. 6.0.0) will handle loopback 

transitions differently. That is, SMC will support two loopback transitions: internal and external. 

The internal loopback transition is defined by the keyword “nil” and when used it causes not to 

execute the state Entry and Exit actions. The external loopback transition is defined when using 

the state name itself instead of “nil”. In this case, Entry and Exit actions are executed. 

3.4.4 Push/Pop Transition 

Since SMC allows defining multiple maps; then, there is a need to transition among them and 

return back. Push and pop transitions are intended for this purpose. That is to say, push transition 

can be used to move to a certain state across maps; conversely, pop transition cause to return to 

the state that is prior to the push transition. When pushing to a certain state, the actions associated 

with push transition are performed, and then the moving to the target state is taken. In the 

contrary, pop transition does not define a next state, obviously because it returns to the last state 

before pushing, but it contains a transition name as an argument which will be performed in the 
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returned state. Also, this argument may contain additional arguments (this will be explained in the 

next example), as well as, pop transition may have actions. For one reason, this is why a state 

may receive an event for which there is no transition defined in it, and so here where the benefit 

of “Default” state and transitions comes; that is, to recover from such situations. “Default” state 

and “Default” transitions are introduced afterwards in the “Default” state and transitions section. 

Push and pop transitions can also be used to move between states in the same map. As well a 

standard or plain transition can be used to move to other maps. Yet, it is not recommended since 

the intention of pushing and popping comes from the need of multiple maps each of which 

contains related states; thus, simplifying the logic of the state machine and resembling simplicity 

of state transition tables; on the other hand, corresponding to the calling techniques of subroutine 

programming. Consider the following Figure 9 [3] that shows extended turnstile FSM with a 

violation state and diagnostic mode. 
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Figure 9: Turnstile FSM with violation state and diagnostic mode 

The violation state is defined and transitioned to when the pass event occurs while in the Locked 

state. The only way to exit the violation state is through Ready transition which indicates the end 

of the violation state. Otherwise, any other transition will be loop backed, as the case with Pass, 

Coin and Reset transitions. The purpose of Reset transition is to allow turning the alarm off while 

working on the turnstile. Also, the diagnostic state (maintenance mode) is added in order to allow 

maintenance and checking for the turnstile functionality. As it can been see in Figure 9, there are 

two super states, Normal Mode and Diagnostic Mode. Each super state contains and groups some 

related sub states. That is, Normal states (normal mode or operations) of turnstile are placed into 

one super state which is referred to as Normal Mode. Diagnostic states (maintenance mode or 

operations) are grouped in one super state call Diagnostic Mode. In terms of SMC concepts, each 

super state corresponds to a certain map; thus, there are two maps, Normal and Diagnostic. 
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Normal map is the main one; hence, in SMC coding, it should be the only one that identifies the 

start state of the whole FSM. In terms of state pattern, super states correspond to the abstract 

classes or “interfaces”, as it was discussed in the implementing state machines using state pattern 

section. To compare, abstract classes can only be instantiated using its sub classes and super 

states can only be entered as part of a sub state. The question is how to transition between these 

two super states- (or maps in SMC?) In the Figure 9, the Diagnostic transition leaves from the 

Normal Mode super state itself, but not from a certain sub state in it. To illustrate, the Diagnostic 

transition can be triggered from any sub state in the Normal mode. Super states simplify state 

diagrams such that, as in this case, there is no need to draw or define the same Diagnostic 

transition for each sub state in the Normal Mode to transition to the Diagnostic Mode. When 

leaving the Normal Mode, the action SaveDeviceStates is called to preserve the states in the 

Normal Mode. Also, when entering the Diagnostic Mode, one of its sub states must be entered. In 

this case, the start state TestCoin, as it is shown in the Figure, is indicated by the initial pseudo 

state; thus, TestCoin is entered. Similarly, in SMC when pushing to a certain map using push 

transition, the Push transition must include the state specifying where to start in the target map. 

On the other hand, returning to the Normal Mode, as the case in the Figure 9, can be made in 

several ways. First, the Reset event puts the turnstile back into the Locked state; performs the 

actions of Locking, setting the Alarm to off and the Thankyou light off. Second, the Return event 

restores the states of the Normal Mode, and then enters the History pseudo state indicated by a 

small circle with H inside. That is, the sub state in the Normal Mode that must be entered is the 

sub state that was last exited. Likewise, in SMC pop transition is used to return back to the last 

state prior to pushing. The following Table 8 introduces, and then the illustration shows, how 

push and pop transitions can be used with multiple maps in SMC code. 
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Table 8: Multiple maps with push and pop transitions 
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In the Table 8 example two maps are defined and push/pop transitions are used to move between 

them, as well to move inside the same map. Table 8 is not precisely corresponding to the state 

diagram in Figure 9 because Table 8 defines more states and transitions (“Defaults”) than Figure 

9, that is for the seek of illustrating push and pop transitions, as well as for keeping the state 

diagram more simple.  Push transition in Table 8 once is defined as follows: 

Default  

{ 

Default [ctxt.isTime (name, time)] Locked/push (TurnstileDiagnosticMode::TestCoin) {GetStatus ( ) ;} 

} 

In this case, Push transition is defined within the “Default “transition inside “Default” state. The 

reason for this is that moving to the Diagnostic Mode can be made from any sub state (Locked, 

Unlocked and Violation). Also, the “Default” transition is guarded; consequently push transition 

will not be taken until a certain time comes as specified in the guard. The meaning of push 

transition: Locked/push (TurnstileDiagnosticMode::TestCoin) {GetStatus ( ) ;} is this: 

1. Transition to the Locked state. 

2. Perform the Locked state entry actions. 

3. Push to the TurnstileDiagnosticMode::TestCoin state  

4. Execute the TurnstileDiagnosticMode::TestCoin state entry actions. TestCoin is now 

the current state and its transitions are handled. 

5. When TurnstileDiagnosticMode issues pop transition, the Exit actions of the popping 

state will be executed, then the control will return to the Locked state without 

executing its Entry actions. The Locked state is now the current state and its 

transitions will be handled.  
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When all tests in the Diagnostic Mode; likely, are done, TurnstileDiagnosticMode issues a pop 

transition to return back to the Locked state in the Normal Mode from which the push transition 

was issued. The pop transition in Table 8 once is defined as follows: 

Default 

{ 

Default [ctxt.isTested ( )] pop (DONE) 

Default pop (FAILED, reason) 

} 

Pop transition here is also triggered from The “Default” transition inside “Default” state. The 

purpose of this is that returning back to the Normal Mode can be mode at any time and sub state 

in the Diagnostic Mode, as well as “Default” state’s guarded- “Default”-transition and its 

unguarded-“Default”-transition each has the less precedence respectively among other transitions 

types. Hence in this example, “Default” transition; therefore pop transition, has two versions, 

guarded and unguarded. If the guarded one returns true, then the control will return back to the 

Locked state from which pushing was made and the DONE transition will be taken in the Locked 

state. Yet, if the guarded “Default” transition returns false, then the second “Default” transition 

will be taken and the FAILED transition will be performed in the Locked state. Note, the pop 

transitions arguments consists of the transition names (DONE and FAILED) and passed 

arguments (reason) in FAILED. Additionally, push and pop transitions in Table 8 are also, for 

explanation reasons, defined to move in the same map, TurnstileNormalMode. In the Locked 

state push transition is introduced as follows: 

Go push (Unlocked) { } 

This syntax is the initial syntax for push transition but it is compatible with the new one 

introduced previously. The push transition in this case causes to transition to the Unlocked state. 

In the Unlocked state pop transition is defined as follows:   
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Return pop (StartDiagnostic) { } 

Pop transition will cause to return back to the Locked state and handle the StartDiagnostic 

transition. However, Locked state does not have StartDiagnostic transition; therefore, the control 

will be taken to the “Default” state which has  guarded “Default” transition which; in turn; 

contains push transition mentioned above. Similarly, push/pop transitions can be defined in other 

sub states in the Normal Mode. 

3.4.5 Transition Actions 

Recall that actions are the first coupling between SMC’s FSM and the application class [1]. Thus, 

actions must be member methods in the application class and accessible by the generated code 

[1]. In other words, actions methods in the programmer application class must be public in order 

to be accessed by generated code. It is possible to declare action methods as private; however, 

each state class will be maintained manually to access actions method. Also, with every 

modification such as deleting or renaming a state, the application class have to be updated which 

is tedious and time consuming work. Generally, the reason of this is because SMC intended to 

work with several target programming languages. Particularly, in Java actions methods can have 

package level accessibility when the application class and the generated code are in the same Java 

package. In essence, it is important to handle and define actions and actions methods effectively 

in both, SMC file and application class. In SMC, Actions are placed after the end state of a 

transition such that they must be enclosed between a pair of braces “{ } “. An action definition 

consists of the action name (corresponds to a method name in the application class) followed by 

argument list. The argument list is enclosed in parenthesis “(  )” which may be either empty or 

contains a comma separated list. Argument list may contain integers (including, decimal, octal or 

hexadecimal and both positive or negative), floating points, strings enclosed in double quotes, 

constants, method calls and transition arguments (transition arguments is discussed in the next 
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Locked Unlocked 

Coin / Unlock (“Thank you”) 

Locked  

{ 

Coin Unlocked {Unlock (“Thank you”) ;} 

} 

 

 

section).  When calling a method on application class as an action argument, the method name 

should be suffixed by “ctxt.”. The suffix “ctxt.” is used only inside argument lists and transition 

guards. Figure 10show a simple use of action arguments and Table 9 shows the equivalent SMC 

code. 

 

Figure 10: Simple transition action argument 

 

 

 

 

Table 9: SMC simple transition action 

 

3.4.6 Transition Arguments 

Transitions may have argument list enclosed in parenthesis “( )” [1]. When defining multiple 

unique-guarded transitions with the same name, they must have the same argument list in order to 

be considered as the same transition. That is to say, if the argument list is not the same for two 

guarded transitions with the same name, then these two transitions are not the same even though 

they share the same name. Transition argument list may include the same types as with transition 

actions. In the next section, transitions argument list and transitions guards will be discussed in 

more details and examples. 
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3.4.7 Transition Guards 

Guards are conditions or Boolean expressions that must evaluate to true in order for transitions to 

be taken. Guards are placed after a transition name and its argument (if exists) [1]. And, they are 

placed inside a pair of square brackets “[ ]”. The allowed argument types for a transition guard 

are the same as with transition action arguments discussed earlier in the transition actions section.  

 Guards’ expression may contain logical and comparison operators, such as (&&, ||, ==, >, etc) 

and nested expression. SMC copies guard conditions literally into the generated code.  If a guard 

expression contains a method call on the application class, then the method’s name in SMC 

coding must be preceded by the prefix “ctxt.” As well, the method invocation may take argument 

list.   Besides, a state may contain multiple transitions with the same name and argument list, but 

distinctive guards. In this case, SMC will check these transitions in the same given order, top to 

bottom, except for the unguarded version which is always taken if all corresponding guarded 

transitions evaluate to false. As a consequence, the guarded transitions order is important; 

specifically, for multiple guards that evaluate to true for the same event. In other words, the first 

top guarded transition will be evaluated and if true, it will be taken. Yet, if this guard condition 

evaluates to false, then SMC will check for one of the choices in the following order: 

1- If the state defines other guarded transitions with the same name and arguments, then 

these will be evaluated orderly from top to bottom till one evaluates to true.  Else, if this 

is not the case, then  

2- If the state defines unguarded transition with the same name and arguments, then this 

transition will be taken, but not evaluated since, obviously, it does not have a guard. Else, 

if it is not the case with those two options, then 

3- The default transition logic is considered. That is, if a “Default” state is defined, then it 

will be checked for a corresponding transition to be evaluated if guarded or taken if not 
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guarded. Else, if the “Default” state is not defined, then SMC will check for a “Default” 

transition defined in the considered state. The “Default transition, in SMC rules, takes no 

arguments, but may have a guard. Therefore, because of this, and also because its name is 

“Default” –but not a certain name, it serves as a back up for all transitions in that state. 

As a result, a very careful consideration should be taken in account when dealing with 

“Default” sate and “Default” transitions (the “Default” state and transitions are discussed 

in the next section). The “following ordered list” summarizes the transitions definitions 

precedence :  

1. Guarded transition  

2. Unguarded transition  

3. The Default state's guarded definition.  

4. The Default state's unguarded definition.  

5. The current state's guarded Default transition.  

6. The current state's unguarded Default transition.  

7. The Default state's guarded Default transition.  

8. The Default state's unguarded Default transition” 

 To make it clear, consider the following Figure 11 [1] which shows the use of transition 

arguments, guards, precedence, and also actions arguments. Table 10 the equivalent SMC code. 
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OnLogin (name, pwd) [authenticate (name, pwd)] /  

SetupUser (name) 

 

 

Figure 11: Transition with arguments, guards, and actions with transition arguments 

 

 

Table 10: SMC equivalent code of Figure 11 

 

 

LoggedOut  

{ 

 

OnLogin (username: String, password: String) 

[ctxt.isLocked (username)]  

nil {DisplayLockedDlg ( ) ;} 

 

OnLogin (username: String, password: String) 

[ctxt.authenticate (username, password)]  

LoggedIn {SetupUser (username) ;} 

 

OnLogin (username: String, password: String) 

nil {DisplayInvalidDlg (username, password) ;} 

} 

LoggedIn LoggedOut OnLogin (name, pwd) / 

DsplayInvalidDlg (name, pwd) 

OnLogin (name, pwd) 

[isLocked (name)] / 

DisplayLockedDlg ( ) 
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The state diagram shown in Figure 11 has two states, LoggedIn and LoggedOut. There are three 

versions of the same transition. That is, three transitions with the same name and arguments. In 

other words, onLogin transition is a multiple transition leading only from the LoggedOut state to 

the LoggedIn state if its guard is true (the username and password are authenticated); otherwise, if 

the username is locked, then remain in the LoggedOut state, (loopback transition), and perform 

the action displayLockedDlg ( ). The third unguarded onLogin transition version is also a 

loopback transition and is taken when each of the other two guarded transitions evaluate to the 

false. In this case, the displayInvalidDlg (username, password) action will be invoked. So, same-

guarded-transitions are taken first in order from top to bottom, if any evaluates to true, ignore 

other transitions and if all false, take unguarded version; if there is no unguarded transitions, 

perform the default transitions methodology as it is mentioned at the beginning of this section.  

As it can be seen in Table 10, the method invocation is preceded by “ctxt”. Likewise, the 

transitions define an argument which in turn is used as the actions argument list. 

3.4.8 Default State and Transition 

Going back to the transitions types presented earlier, (standard, jump, loopback, and push/pop); a 

“Default” transition is another kind and is discussed in this section along with a “Default” state 

[1]. SMC does not support state inheritance; instead, it adds the default state and transition as an 

equivalent technique. That is, allowing transitions to have virtual definitions; in other words, if a 

transition is not defined in a certain state, then default state or default transition will take place; 

thus, this is similar to calling or overriding super classes’ methods. Two next sections 

demonstrate “Defaults” technique with some examples.    
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3.4.9 Default State 

Any map may contain a Default state [1]. The Default state is defined by the keyword “Default”. 

Consider the following example in Figure 12 , which shows the use of the Default state in 

turnstile FSM.  

 

Figure 12: Default state 

Since the Default state is not a “real” state and cannot be transitioned to, drawing it as it is shown 

in the Figure 12 is not appropriate. The intention of showing it in the diagram is for explanation 

purpose. Note that the coin transition is not defined in the Locked state and if the Locked state 

receives this transition to transition to the Unlocked state, then the coin transition in the Default 

state will be invoked to transition to the Unlocked state and the Unlock action will be called. 

Similarly, the pass transition is not defined in the Unlocked state; therefore, the pass transition in 

the Default state will be taken. The state diagram in Figure 12 can be coded in SMC language as 

follows: 
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Table 11: Defining Default state in SMC language 

Here, the Default state is used to define the “normal” transitions, coin and pass of Locked and 

Unlocked state respectively. So, it overrides the default behavior of turnstile FSM. In essence, 

“Default” state transitions, as normal transitions, may have arguments and guards. Thus, the 

“Default” state may have multiple guarded and one unguarded definition for the same transition. 

Also, the “Default” state may have a default transition using the same keyword “Default”. Default 

transition is discussed in the following section. 

3.4.10 Default Transition 

There are two ways to define default transitions [1]. The first one is that the “Default” state which 

defines transitions, including a “Default” transition, that serve as a “fallback” for all other states; 

hence, “Default” state transitions can be considered as default transitions since they are placed in 

Locked  

{ 

Pass   nil {Alarm ( ) ;} 

} 

Unlocked  

{ 

Coin   nil {Thankyou ( ) ;} 

} 

Default  

{ 

Coin   Unlocked {Unlock ( ) ;} 

Pass    Locked {Lock ( ) ;} 

} 
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the “Default” state. That is, if there is a missing transition definition (as it is shown in Figure 12 

and Table 11) in a specific state and that transition is used, then SMC will invoke the 

corresponding Default state’s transition if defined. The second way is a “Default” transition itself. 

The “Default” transition can be placed in any state including Default state using “Default” 

keyword to back up all transitions in that state. Deem the following example: 

 

Table 12: Defining Default transitions and Default state in SMC file 

In the Table 12, Default transitions and Default state are defined. First, let’s look at the Default 

transitions. In the Locked state there are two transitions, coin and Default. If any transition than 

coin occurs in Locked state, then its Default transition will be taken regardless of what a 

Locked  

{ 

Coin   Unlocked {Unlock ( ) ;} 

 

Default nil {LockedError ( ) ;} 

} 

Unlocked  

{ 

Pass   Locked {Lock ( ) ;} 

 

Default Unlocked {UnlockedError ( ) ;} 

} 

Default  

{ 

Coin   nil {Thankyou ( ) ;} 

Pass    nil {Alarm ( ) ;} 

} 
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transition is. Likewise, in the Unlocked state if any transition than pass occurs in it, then its 

Default transition will be performed. However, since the Default state is also defined in Table 12, 

so it has a higher precedence than the Default transitions defined within states. To illustrate, 

assume that Locked state receives pass transition which is not defined in it, then the “Default” 

transition defined in Locked state will not be taken because the Default state defines the pass 

transition which will transition to the same state, as “nil” keyword indicates and Alarm action will 

be called, instead of LockedError action. As it can be seen in Table 12, the use of “nil” is 

compulsory in the “Default” state, but in other states, the state name, optionally can be used 

instead, as the case in Table 12 in the “Default” transition of Unlocked state where the state name 

(Unlocked) is used instead on “nil”. (The future release of SMC will distinguish between using 

nil and state name, see Loopback transition section for further details). Since default 

transitions defined within a certain state using “Default” keyword can be triggered if there is any 

undefined transition in that state, so they may not have argument list, but they may take a guard. 

In fact, placing a Default transition in the Default state itself will cause all transitions in the FSM 

to be handled regardless of being undefined.   

Indeed, Default state and transitions prevent system crashing. They can be thought as exceptions 

handling or recovering technique. Since defining “Default” states and “Default“ transition are 

optional, it is the case that SMC may encounter undefined transitions. Therefore, SMC will throw 

a “Transition Undefined” exception. 

3.4.11 State Entry and Exit Actions 

Entry and Exit actions are those that performed whenever entering and exiting a state, 

respectively [1]. However, in SMC state’s Entry and Exit actions execution relays on the 

type of transition being taken, “as shown in the following table” [1]: 
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Transition Type Execute "From" State's Exit Actions? Execute "To" State's Entry Actions? 

Simple Transition Yes Yes 

Loopback 

Transition 

No No 

Push Transition No Yes 

Pop Transition Yes No 

Table 13: Entry and Exit actions execution and transitions types dependency 

Consider the following state diagram with Entry and Exit actions, Figure 13 , and also the 

equivalent SMC code in Table 14. 

 

Figure 13: Turnstile State diagram with Entry and Exit actions 
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Table 14:Entry and Exit actions in SMC 

Note that Entry and Exit actions are placed immediately after a state name and before the starting 

“{“of the state. 

3.4.12 Transitions Issue Transitions 

SMC does not allow issuing a transition from within an action and it throws an exception if an 

action does issue a transition [1]. This is clearly because while in the transition, an object is no 

more in any specific state. It is in between states where actions occur. Therefore, it is not 

Locked 

Entry  

{ 

  Deposit (“Please deposit a coin”, coin); 

  CheckCoin ( ); 

} 

Exit 

{ 

  Granted (“Welcome”); 

  Denied (“Locked”); 

} 

{ 

Coin Unlocked {Unlock ( ) ;} 

Pass   nil {Alarm ( ) ;} 

} 

Unlocked 

Entry  

{ 

  Enter (“Welcome”); 

} 

Exit {   } 

 { 

Pass Locked {Lock ( ) ;} 

Coin   nil {Thankyou ( ) ;} 

} 
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reasonable to issue a transition from a transition. However, it is the case where there is a need to 

take different transition depending on an action results. In such certain circumstances it is 

possible to place the action in the transition guard; thereby, the next transition that will be taken 

relays on that associated transition guard (in this case associated action) result. As another 

solution, the action can be placed in a state’s entry action list from which the action can issue the 

transition depending on its result. That is, an object while in state entry actions is already in a 

known state and a different transition can be taken, therefore. However, this technique can lead to 

face some problems. When using this way, it is strongly recommended that the transition is issued 

by the last entry action to guaranty that all state’s entry actions are executed. Also, a different 

way is to use timers and transitions queues to issue a transition within a transition. Issuing a 

transition within a current transition may lead to generate a buggy code since it requires knowing 

what actions are invoked and in what order. 
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Chapter 4 

SMC Pattern and Generation 

4.1 SMC Pattern 

As mentioned before, SMC follows state pattern and generates state pattern classes (see 

implementing state machines using state pattern section). Consider the following Figure 14 [1] 

which shows SMC pattern with Turnstile example..  

 

Figure 14: SMC pattern 

Since SMC supports use of multiple maps, push/pop transitions, default states and default 

transitions, its state pattern is extended from the original state design pattern (see Figure 4). That 
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is, as it can be seen in the Figure 14, the Context class is divided into two classes: an abstract 

FSMContext class: this is not generated but used by SMC compiler and <AppClass>Context 

class: this is the generated class that interacts with AppClass – application class (recall AppClass 

is the application class that should be hand written) such that the <AppClass>Context class 

(generated context class) defines transitions methods which are called by AppClass – application 

class. The FSMContext class maintains the current state, as well as the state stack which used to 

track pushing and popping states. Also, FSMContext class defines methods for setting the state, 

and pushing/popping states. The <AppClass>Context is a subclass of FSMContext which defines 

a getState ( ) method and maintains a reference to <AppClass- application class> object. The 

getState ( ) method returns the current state as a <AppClass – application class>State object, but 

not a State object; therefore, this method is defined in this class instead of FSMContext class. 

Likewise SMC; unlike, state pattern which has an abstract State class and ConcreteStates 

subclasses, has four levels: State, <AppClass>State, Map Default state and concrete states. The 

reasons for this extension levels are that to support SMC’s default state and transitions. To 

illustrate, first <AppClass>State declares a virtual method (abstract) for each transition in the 

state machine. These transitions methods invoke <AppClass> State’s Default transition method. 

Furthermore, the map default class contains Default state’s transitions. And, each concrete state is 

a subclass of its map’s default state class. The state class defines methods that implement state 

machine transitions. The map class and concrete state classes are singletons; in other words, the 

map class declares one instance of its concrete state classes and it has no methods. That is, the 

map class is a compartment that aggregates a map’s state instance into one location. Specifically, 

SMC geneاوكيrates several classes, yet there is only one instance of each state class and only one 

class (<AppClass>Context) is instantiated for each <AppClass> class instance. Thus, SMC uses 

leas run time space. 

SMC is not directly related to UML or Harel state machines [1]. That is, SMC uses multiple maps 

and pushing and popping states to simplify the state machine logic, in that it follows subroutine 

calls technique. On the other hand, UML groups states into super states to accomplish a similar 

concept. 
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4.2 SMC Generated Code 

The following SMC hand-written file (TurnstileAppClass.sm) corresponds to the Turnstile state 

diagram shown in Figure 3Error! Reference source not found. and is the same code as the file 

showing previously in Table 4 and Table 5, but without verbatim code and comments: 

 

 

 

 

 

 

 

Compiling this SMC file using Java as a target language, the Following Java code (state pattern 

classes) is generated. The code is generated in one Java file named 

TurnstileAppClassContext.java: 

%class TurnstileAppClass  

 

%package turnstile  

 

%access package   

 

%start TurnstileFSM::Locked 

%map TurnstileFSM 

%%  

Locked    

 { 

Coin Unlocked {Unlock(); } 

  Pass nil {Alarm(); } 

 } 

 Unlocked 

 { 

  Pass Locked {Lock(); } 

  Coin nil {Thankyou(); } 

 } 

%% 

 

Table 15: SMC code describes simple Turnstile FSM 
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package turnstile; 

 

/* package */final class TurnstileAppClassContext extends 

statemap.FSMContext { 

 //--------------------------------------------------------------- 

 // Member methods. 

 // 

 

 public TurnstileAppClassContext(TurnstileAppClass owner) { 

  super(); 

 

  _owner = owner; 

  setState(TurnstileFSM.Locked); 

  TurnstileFSM.Locked.Entry(this); 

 } 

 

 public TurnstileAppClassContext(TurnstileAppClass owner, 

   TurnstileAppClassState initState) { 

  super(); 

  _owner = owner; 

  setState(initState); 

  initState.Entry(this); 

 } 

 

 public void coin() { 

  _transition = "coin"; 

  getState().coin(this); 

  _transition = ""; 

  return; 

 } 

 

 public void pass() { 

  _transition = "pass"; 

  getState().pass(this); 

  _transition = ""; 
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  return; 

 } 

 

 public TurnstileAppClassState getState() 

   throws statemap.StateUndefinedException { 

  if (_state == null) { 

   throw (new statemap.StateUndefinedException()); 

  } 

 

  return ((TurnstileAppClassState) _state); 

 } 

 

 protected TurnstileAppClass getOwner() { 

  return (_owner); 

 } 

 

 public void setOwner(TurnstileAppClass owner) { 

  if (owner == null) { 

   throw (new NullPointerException("null owner")); 

  } else { 

   _owner = owner; 

  } 

 

  return; 

 } 

 

 //--------------------------------------------------------------- 

 // Member data. 

 // 

 

 transient private TurnstileAppClass _owner; 

 

 //--------------------------------------------------------------- 

 // Inner classes. 

 // 
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 public static abstract class TurnstileAppClassState extends 

statemap.State { 

  //--------------------------------------------------------- 

  // Member methods. 

   

  protected TurnstileAppClassState(String name, int id) { 

   super(name, id); 

  } 

 

  protected void Entry(TurnstileAppClassContext context) { 

  } 

 

  protected void Exit(TurnstileAppClassContext context) { 

  } 

 

  protected void coin(TurnstileAppClassContext context) { 

   Default(context); 

  } 

 

  protected void pass(TurnstileAppClassContext context) { 

   Default(context); 

  } 

 

  protected void Default(TurnstileAppClassContext context) { 

   throw (new 

statemap.TransitionUndefinedException("State: " 

+ context.getState().getName() + ", Transition: " 

     + context.getTransition())); 

  } 

 

  //--------------------------------------------------------- 

  // Member data. 

 } 
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 /* package */static abstract class TurnstileFSM { 

  //--------------------------------------------------------- 

  // Member methods. 

  // 

  //--------------------------------------------------------- 

  // Member data. 

  // 

  //------------------------------------------------------- 

  // Constants. 

  // 

  public static final 

TurnstileFSM_Default.TurnstileFSM_Locked Locked = new 

TurnstileFSM_Default.TurnstileFSM_Locked( 

    "TurnstileFSM.Locked", 0); 

  public static final 

TurnstileFSM_Default.TurnstileFSM_Unlocked Unlocked = new 

TurnstileFSM_Default.TurnstileFSM_Unlocked( 

    "TurnstileFSM.Unlocked", 1); 

  private static final TurnstileFSM_Default Default = new 

TurnstileFSM_Default( 

    "TurnstileFSM.Default", -1); 

 } 

 

 protected static class TurnstileFSM_Default extends 

TurnstileAppClassState { 

  //--------------------------------------------------------- 

  // Member methods. 

  // 

 

  protected TurnstileFSM_Default(String name, int id) { 

   super(name, id); 

  } 

 

  //--------------------------------------------------------- 

  // Inner classse. 
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  // 

 

  private static final class TurnstileFSM_Locked extends 

    TurnstileFSM_Default { 

   //--------------------------------------------------- 

   // Member methods. 

   // 

 

   private TurnstileFSM_Locked(String name, int id) { 

    Super(name, id); 

   } 

 

  protected void coin(TurnstileAppClassContext context) { 

    TurnstileAppClass ctxt = context.getOwner(); 

 

    (context.getState()).Exit(context); 

    context.clearState(); 

    try { 

     ctxt.unlock(); 

    } finally { 

     context.setState(TurnstileFSM.Unlocked); 

     (context.getState()).Entry(context); 

    } 

    return; 

   } 

 

  protected void pass(TurnstileAppClassContext context) { 

    TurnstileAppClass ctxt = context.getOwner(); 

 

TurnstileAppClassState endState =   context.getState(); 

 

    context.clearState(); 

    try { 

     ctxt.alarm(); 

    } finally { 
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     context.setState(endState); 

    } 

    return; 

   } 

 

   //--------------------------------------------------- 

   // Member data. 

   // 

  } 

 

  private static final class TurnstileFSM_Unlocked extends 

    TurnstileFSM_Default { 

   //--------------------------------------------------- 

   // Member methods. 

   // 

 

   private TurnstileFSM_Unlocked(String name, int id) { 

    Super(name, id); 

   } 

 

  protected void coin(TurnstileAppClassContext context) { 

    TurnstileAppClass ctxt = context.getOwner(); 

 

TurnstileAppClassState endState = context.getState(); 

 

    context.clearState(); 

    try { 

     ctxt.thankyou(); 

    } finally { 

     context.setState(endState); 

    } 

    return; 

   } 

 

  protected void pass(TurnstileAppClassContext context) { 
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    TurnstileAppClass ctxt = context.getOwner(); 

 

    (context.getState()).Exit(context); 

    context.clearState(); 

    try { 

     ctxt.lock(); 

    } finally { 

     context.setState(TurnstileFSM.Locked); 

     (context.getState()).Entry(context); 

    } 

    return; 

   } 

 

   //--------------------------------------------------- 

   // Member data. 

   // 

  } 

 

  //--------------------------------------------------------- 

  // Member data. 

  // 

 } 

Table 16: Generated code: TurnstileAppClassContext.java 

The following Figures: Figure 15, Figure 16, Figure 17 show class diagrams for the generated 

code. That is, the diagrams are generated according to the generated code in Table 16. These 

diagrams are generated using Eclipse [9] and Omondo [10] UML plug in for Eclipse.  
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Figure 15: Class diagram for the generated code in Table 16 
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As it is stated previously, the generated code is grouped in one Java file called 

TurnstileAppClassContext.java. This file consists of TurnstileAppClassContext class (Blue color 

in the Figure 15) along whit a number of inner classes (White color) as it is shown in the Figure 

15. The following Figure 16 shows the dependency between the generated classes (Blue color), 

classes in statemap library (SMC’s library, not generated – in Yellow color), and the 

programmer’s hand written code (application class – Pink color).  
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Figure 16: Dependency between generated classes, statemap library and application class, 

(corresponds to the generated code in Table 16) 

 



 

 64 

Now consider Figure 17, “a big picture”, which shows the complete view of the SMC’s written 

file, programmers written application class, generated classes, statemap library classes that SMC 

complier (smc.jar) uses to interact with the generated classes. Pink color is for manual code; that 

is, application class (TurnstileAppClass.java), SMC (.sm) files (TurnstileAppClass.sm) and an 

interface (TurnstileActions.java). Blue color is for the generated classes; that is 

TurnstileAppClassContext which acts as a compartment that groups inner classes. Yellow color is 

for the classes in the statemap library. The figure also shows the dependency and association 

among these various classes, as well as SMC compiler (Red color). 
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Figure 17: Application class, .sm file, SMC compiler, generated code (Table 16) and SMC 

library (statemap) dependency and association 

SMC 

Compiler 

(smc.jar) 

Generate
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4.3 Generating GraphViz Dot File 

In addition to the generated state pattern classes, SMC generates a GraphViz.dot file [1]. 

GraphViz [11] is open source graph visualization software. It takes descriptions of graphs in a 

textual file and generates diagrams in several formats. More details and downloading information 

can be obtained at [11].  In essence [1], by using SMC command line options, –graph and –

glevel, SMC generates GraphViz.dot file from which, by using GraphViz , a diagram describing  

FSM can be drown. The –glevel <0, 1 or 2> options determine the amount of details that will be 

drowning in the diagram, as it is mentioned in the SMC command line options section.  

Compiling the SMC file shown in Table 15 with –graph and –glevel, the following Figures: 

Figure 18, Figure 19 and Figure 20 show the generated diagrams with –glevel 0, -glevel 1, -glevel 

2 details respectively.  

 

Figure 18: Turnstile diagrams with least details (-glevel 0) 
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Figure 19: Turnstile diagrams with -glevel 1 

 

Figure 20: Turnstile diagrams with -glevel 2 
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Since in this example, there are no transition arguments, pop transition arguments and state entry 

and exit actions, so they are not represented in Figure 20. But, consider the following diagram 

which is generated for the SMC file in Table 8. 

 

Figure 21: Turnstile diagram with multiple maps 

In the above diagram there are two maps: TurnstileNormalMode and TurnstileDiagnosticMode 

map. SMC [1] when generating GraphViz dot file, it represents each map in a separate sub graph, 

and also as it is shown in all previous GraphViz drawings, all states names are represented by a 

full qualified named; that is a map name and state name format (<map name>::<state name>). 

The reason for this is that GraphViz has a single global namespace whereas SMC has a separate 

namespace for each map. In other words, for instance, NormalMap::Start and 

DiagnosticMap::Start in one SMC file yields two different Start states. Yet, GraphViz sees these 

two Start states to be the same node; thus, it draws only one node named Start. This is due to 

nodes in GraphViz exist in the same global namespace. Therefore, to resolve this situation, SMC 

when generating GraphViz dot file, uses the fully qualified state name. 
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4.4 Generating HTML Table 

Using the command line option –table [1], SMC generates an HTML table includes the actions 

for each state/transition pair, each state’s entry and exit actions as it is shown in the following 

Table 17. 

 

Table 17: Generated HTML table for SMC file in Table 8 
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4.5 Persistence 

SMC’s command line “-serial” is required to be used when persisting SMC’s finite state 

machines [1]. Persistence is a way of storing, and then restoring data. In other words, 

writing/reading data in/from a resource. SMC generated finite state machine can be 

persisted via the instance of FSM that is defined in the application class, <AppClass> and 

the data to persist is the FSM current state and state stack. Regarding Java as a target 

language, SMC takes advantage of Java’s object serialization. In this case, the application 

class should implement java.io.serializable and the FSM instance (<AppClass>Context 

class object) should not be a transient. Serializing the <AppClass> instance will result to 

serializing FSM. That is, when the application class, <AppClass> is serialized, its 

associated <AppClass>Context class is serialized too; however the opposite way is not 

true.  Also, when <AppClass>Context class is deserialized, the <AppClass> class 

reference is not. 



 

 71 

4.6 State Change Notification 

State change notification [1] is an important feature that is supported by SMC for some of 

the supported target programming languages. SMC employs Java Bean event notification 

and .Net event raising features to inform listeners when state change occurs. In essence, 

SMC does not generate event registration and listening code. Instead, the application 

class receives and maintains the events, then passes them to the FSM 

(<AppClass>Context class.). FSM; then, keeps track of the object’s state.  

4.7 Reflection 

For reflection [1], SMC uses –reflect command line option for Java, C#, Perl, PHP, Python, 

Ruby, Tcl and VB.Net programming languages. By using reflection, SMC generates either a 

getTransitions methods or a Transitions property for C# and VB.Net. The returned value is a map 

represents transitions names. Transitions names are map keys with an integer value. For Java the 

method definition is: “Public Map getTransitions()” where map key is a String (transition name) 

and the value is an integer. Integer values are: 

0: the transition is undefined in the current state.  

1: the transition is defined in the current state.  

2: the transition is undefined in the default state. 

Knowing the current state’s transitions is useful especially when developing interfaces such that 

some features in the interface can be activated or deactivated based in the current state. 

Particularly, calling getState ( ) method while in a transition is not possible because the state is 

not yet known. The getPreviousState ( ) can be called while transitioning to determine the 

previous state. 



 

 72 

Chapter 5 

Conclusion  

5.1 Closing Points 

SMC brings a great benefit of automatically implementing finite state machines in several 

programming languages, following state pattern. In the same way, SMC is simple in that its file is 

easy to write and understand. SMC’s syntax is the same for all supported target languages. In 

fact, SMC is not a programming language or a real compiler, but it is “a glorified macro 

generator” [1]. That is to say, SMC does not compile its file such as guards or arguments, but 

instead it reads these literally and writes them out to the target language, depending on the 

specified language to find errors. Indeed, SMC decouples the implementation of the actions, from 

the FSM logic; that is, the state transition behavior which is implemented by SMC as methods in 

the generated context class. Thus, instantiating one instance of the generated context class and 

invoking its transitions method in the application class is only what needed to interact with the 

FSM. Also, SMC generates state pattern classes in one file consisting of several inner classes. 

Hence, it takes leas run time space. For one thing, SMC’s file considers a certain application class 

for a specific target language; there for, SMC requires determining a target language in the 

command line option. As a result, this imposes limitation on the generated code such that the   

.sm file for a particular class and a specific language can not be reused in a different application 

or target language without certain changes. However, the advantages of targeting several 

programming languages and generating state pattern classes is more worthy than specifying a 

certain language in the command line or doing minor alerts in the code [1]. Put another way, 

SMC leverages implementation of FSM in several programming language using the power of 
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state pattern with the least impact to the target application; therefore, it tries to use the lowest 

common programming language constructs. Consequently, the complexity of the target 

programming language is centralized and hidden in the intended application class. Regarding 

Default state and Default transition, one can say that the use of the same keyword “Default” for 

the “Default” state and the “Default” transitions is “a wrong design decision”. Since SMC 

primarily and heavily relays on those Defaults and all states may have default transitions 

including the default state itself, this may lead SMC file to be difficult to follow, and also to 

differentiate between Default states and Default transitions, despite the indentation, and 

especially with large FSMs that make much use of default states and transitions, hence, error-

prone. Furthermore, SMC [1] accepts only simple method calls; for example, “object().name()” 

call is not accepted due to the support of multiple languages. Further, Push/pop and simple 

transitions can be used interchangeably. That is to say, what can be done using push/pop 

transitions can also be done using simple transition. In other words, simple transition can be used 

in the same way and for the same purpose as push/pop transitions to move across maps.   
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Appendix A 

SMC EBNF Grammar  

SMC EBNF are straightforward and easy to understand. The following description [1] introduces 

SMC EBNF:  

 FSM := source? start_state class_name header_file? include_file* 

package_name* import* declare* access* map+ 

 

source := '%{' raw_code '%}' 

 

start_state := '%start' word 

 

class_name := '%class' word 

 

header_file := '%header' raw_code_line 

 

include_file := '%include' raw_code_line 

 

package_name := '%package' word 

 

import := '%import' raw_code_line 

 

declare := '%declare' raw_code_line 

 

access := '%access' raw_code_line 

 

map := '%map' word '%%' states '%%' 

 

states := word entry? exit? '{' transitions* '}' 

 

entry := 'Entry {' actions* '}' 

 

exit := 'Exit {' actions '}' 

 

transitions := word transition_args? guard? next_state '{' actions '}' 

 

transition_args := '(' parameters ')' 

 

parameters := parameter | 

              parameter ',' parameters 

 

parameter := word ':' raw_code 

 

guard := '[' raw_code ']' 

 

next_state := word | 

              'nil' | 

              push_transition | 

              pop_transition 
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push_transition := word '/' 'push(' word ')' | 

                   'nil/push(' word ')' | 

                   'push(' word ')' 

 

pop_transition := 'pop' | 

                  'pop(' word? ')' | 

                  'pop(' word ',' pop_arguments* ')' 

 

pop_arguments := raw_code | 

                 raw_code ',' pop_arguments 

 

actions := dotnet_assignment | 

           action | 

           action actions 

 

dotnet_assignment := word '=' raw_code ';' 

 

action := word '(' arguments* ');' 

 

arguments := raw_code | 

             raw_code ',' arguments 

 

word := [A-Za-z][A-Za-z0-9_.]* | 

        _[A-Za-z][A-Za-z0-9_.]* 

<div class="comment">// Reads in code verbatim until end-of-line is 

reached.</div> 

raw_code_line := .* '\n\r\f' 

 

<div class="comment">// Read in code verbatim.</div> 

raw_code := .* 

 

<div class="comment">// Both the // and /* */ comment types are 

supported.</div> 

<div class="comment">// Note: SMC honors nested /* */ comments.</div> 

comment1 := '//' .* '\n\r\f' 

comment2 := '/*' .* '*/' 

 


