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Abstract 

The details of the statistical-model code GEMINI are discussed. It is shown that GEMINI does 

a reasonable job at reproducing experimental charge distributions for light compound nuclei. 

However for heavier systems, it overpredicts the width of the fission mass distribution. A new 

code GEMINI++ has been written to address this problem. 
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INTRODUCTION 

The statistical-model code GEMINI was written in 1986 to address complex-fragment emission in 

fusion reactions. It differed from most other statistical-modes codes at the time in that it allowed not 

just light-particle evaporation and symmetric fission, but all possible binary-decay modes. Soon after 

the discovery of fission, Bohr and Wheeler borrowed the one-dimensional transition-state formalism 

from the study of chemical reaction rates and applied it to symmetry fission [1]. Moretto [2] 

generalized this formalism by adding an extra dimension associated with mass-asymmetry thus 
allowing it to treat binary decays of intermediate mass asymmetry. This formalism, in conjugation 

with barriers calculated for asymmetric fission by Arnie Sierk [3], was incorporated into GEMINI. 

With these ingredients, GEMINI produced rather good agreement with complex-fragment or 
asymmetric fission data obtained with light compound nuclei [4-6]. 

 

GEMINI is a Monte Carlo code which follows the decay of a compound nucleus by a series of 

sequential binary decays until such decays are impossible due to energy conservation or improbable 

due gamma-ray competition. For the latter, only the statistical emission of E1 and E2 gamma rays is 

considered, but these are only important at the lowest thermal energies when the particle decay width 

approaches zero. 

 

As GEMINI was written to confront data from heavy-ion induced fusion reactions, the effects of large 
angular momenta were explicitly treated. For this reason the dichotomy between light-particle 

evaporation and other binary decays was still maintained. The best way of treating light-particle 

evaporation at high angular momentum is via the Hauser-Feshbach formalism [7]. Thus GEMINI  
differs from most other statistical-model codes used for modeling spallation reactions in that it uses 

this formalism rather than the Weisskopf-Ewing result [8]. The cost of this better treatment of angular 

momentum is increased CPU time. The usefulness of this aspect of GEMINI in modeling spallation 
reactions therefore depends on the degree to which residues with high spin are produced in the initial 

stages of the reaction. Angular momentum effects include anisotropic angular distributions, although 

these distributions still process a symmetry about θcm=90˚. To model these correctly, the input to 

GEMINI must also include the orientation of the spin axis of the excited residue. 

 

For heavy systems, GEMINI simulations generally overpredict the width of the fission mass and 

charge distributions. Although this may be a failure of the asymmetric fission barriers used in the 
calculations, it probably signifies a failure of the underlying model. The Moretto formalism predicts 

the mass-asymmetry distributions along the ridge of conditional saddle points. However, the final 

mass of the fission fragments is not frozen until the scission point is reached. For light nuclei, the 
saddle and scission points are almost degenerate so substantial modification during the saddle-to-

scission motion is expected to be small. On the other hand for heavy systems, the saddle and scission 

configurations are quite different. Specifically for very heavy systems, the saddle point can no longer 
be approximately by two nascent fragments connect by a neck. The neck disappears and the saddle 

point is a deformed mononucleus and thus one cannot even define an asymmetry degree of freedom. 

In such cases, the mass asymmetry develops during the descent from saddle to scission. Therefore, the 

failure of GEMINI for these heavier systems was not unexpected. 

 

Due to these deficiencies of the original code for heavy nuclei, as new code GEMINI++ has been 

written to address these problems. The new code also signals a change in language. The original 

version was written in Fortran77 and subsequently changed to Fortran90. The new version, 

GEMINI++, is written in the C++ language. In addition, a change of philosophy was made. The 

original GEMINI was written with lots of options to explore changes in the decay characteristics 
induced by the inclusion of different physics. No effort was made to systematize parameters to obtain 

a good overall agreement with data from a large range of compound-nucleus masses. In GEMINI++, 

extensive comparisons with heavy-ion induced fusion data have been used to optimize the default 

parameters of the model. Such data are useful for constraining statistical-model codes, as unlike 

spallation, the excitation energy and spin distributions of the compound nuclei can be well defined. 
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However, this optimization is only for the regions of spin and excitation energies populated by heavy-

ion fusion reaction which may not coincide with those produced in spallation. 

 

The details of the various aspects of the two codes are given in the following sections. 

LIGHT-PARTICLE EVAPORATION 

 

In the Hauser-Feshbach formalism [7], the partial decay width of a compound nucleus of excitation 
energy E* and spin SCN for the evaporation of particle i is 
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where Sd is the spin of the daughter nucleus, Si, J, and l , are the spin, total and orbital angular 
momenta of the evaporated particle,  ε and Bi are its kinetic and separation energies, l

T  is its 

transmission coefficient or barrier penetration factor, and ρ and ρCN are the level densities of the 
daughter and the compound nucleus, respectively. The summations include all angular 

momentum couplings between the initial and final states which are computationally expensive. 
Evaporation channels include n, p, d, t, 

3
He, α, 6He, and 6-8Li fragments. For the heavier fragments, we 

include in addition all their excited states with excitation energy less than 5 MeV. 

 

Separation energies Bi, nuclear masses, shell ∆W and pairing ∆P corrections are obtained from the 

tabulations of Möller et al. [9]. Where available the experiment masses are used, otherwise the Finite-

Range Droplet model values with shell and pairing corrections are taken. 

 

Transmission coefficients have traditionally been obtained from the inverse reaction using the optical-

model parameters obtained from global optical-model fits to elastic scattering data. Alexander et al. 

[10] have pointed out that such transmission coefficients contain the effects of transparency in the 
inverse reaction which is not appropriate in evaporation. We have therefore kept the real optical-model 

potentials, but to ensure full absorption, used the incoming-wave boundary-condition model (IWBC) 

[11] to calculate
l
T . Global optical-model potentials were obtained from Refs. [12-18]. 

 
The transmission coefficients define the shape of the low-energy or “sub-barrier” region of the 

evaporation spectra. For α and heavier particles, these IWBC transmission coefficients systematically 
underpredict the yield of low-energy particles [19-26]. While adjusting the optical-model parameters 

to reduce the Coulomb barrier can reproduce some of the α-particle data, Li and Be spectra clearly 
show the need to a distribution of Coulomb barriers [27]. The origin of this distribution may have 

contributions from compound-nucleus thermal shape fluctuations [28,29] and/or fluctuations in the 

diffuseness of the nuclear surface. If the fluctuations are thermally induced, then we expect their 

variance to be proportional to temperature. In GEMINI++, a simplistic scheme was implemented to 

incorporate the effects of barrier distributions. The transmission coefficients were calculated as  

( ) ( ) ( ) ( )
3
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+− ++

= lll
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which is the average of three IWBC transmission coefficients calculated with three different radii for 

the nuclear potential. The radii R0 is the value from the global optical-model fits and ∆r=w T , 
consistent with thermal fluctuations. The value of the parameter w=0.9 fm was obtained from fits to 

experiment data. 

 
Nuclear level densities were taken as a Fermi-gas form, i.e. 

( ) ( ) ( )[ ]UJUaJJE ,2exp12*, +∝ρ        (3) 

where a is the level-density parameter and the thermal excitation energy U=E*-Erot(J)+δP is back 
shifted by the pairing correction δP and the rotational energy of the ground-state configuration Erot( J) 
. The latter is taken from the Finite-Range model of Sierk [30]. 
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Following Ignatyuk et al.[31,32], the fade out of shell effects is included in the level-density parameter 

as  

( ) ( ) ( ) 




 +=
U

W
UhUaUa

δ
1~         (4) 

where the function specifying the rate of fade out is 

( ) ( )UUh 1exp1 η−= .         (5) 

The fadeout parameter was set to 1/η1=18.5 MeV [31-32]. 

 

From neutron resonance counting, one finds that at low excitation energies ≅a~  A/7.3 MeV [31]. At 

higher excitation energies probed by fusion reactions, smaller values are needed to reproduce the 

kinetic-energy spectra of evaporated particles. Thus a~  must be dependent on the excitation energy. A 

number of studies [25,26,33] have assumed the form 

( )

A

U
k
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κ+
=~          (6) 

where k and κ can be obtained from fits to data and the κ term can be thought of as a first order 

correction to a constant value of k. For Yb compound nuclei where evaporated n, p, and α spectra 
were fit, values of k=7 MeV and κ=1.3 MeV were obtained [33]. For heavier systems, where only p, 

and α spectra were available, not unique values of k and κ were obtained from fits, but if k≈ 8 MeV is 

assumed, then κ values of 3 MeV for 
193
Tl [26], 2-3 MeV for 

200
Pb [25], 4.3 MeV for 

213
Fr [26], and 

8.5 MeV for 
224
Th [26] compound nuclei were deduced. In addition for 

106
Cd compound nuclei, 

evaporation spectra were well reproduced up to high excitation energies with a constant a~ =A/7.5 

MeV, i.e. κ=0. These results suggest that κ increases rapidly with A. To systematize this effect in 

GEMINI++, these data and other evaporation spectra were fit with a slightly different form which was 
felt to have a better asymptotic behavior, 
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At U=0, a~ =A/k0 where k0=7.3 MeV from neutron resonance counting. For low values of U/A, this 

form reduces to the previously form of Eq. 6. The evolution of the level-density parameter with 

excitation energy is thought to be associated with the washing out of long-range correlations 
associated with coupling between nucleon degrees of freedom and surface vibrations. In the ground 

state, these long-range correlations cause the single-particle level density g(ε) to be enhanced near the 
Fermi energy εF [34]. Now as ( )Fga ε∝~ , so the washing out of these correlations reduces its value. 

The level-density parameter should therefore approach the value with no correlations which was taken 

as ∞= kAa /~  ( ∞k =12 MeV). Experimental evaporation data can be reproduced with 

( ).0332.0exp00493.0 A=κ  

This strong mass dependent has significant consequences for fission of the heavier systems (see later). 

 

The angular distributions of the evaporated fragments can be determined from the l  and m quantum 

numbers of the evaporated particles. One must provide the initial spin projection of the compound 

nucleus and then use Clebsch-Gordan coefficients and the predicted values of J, l , and Sd to 

determine the m distributions of the emitted fragment. Although such an approach is implemented in 

GEMINI for evaporation only, we lack a quantum-mechanical model to follow the m-state 

distributions through fission. A more general procedure is to use a quasi-classical approach which is 

also implemented in GEMINI and is the only option is GEMINI++. From the values of J, l , and Sd 

predicted by the Hauser-Feshbach formalism and the initial spin alignment of the parent nucleus, a 
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classical vector associated with l is determined. The angular distribution of the evaporated particle 

about this vector is then chosen from the distribution ( )2cosθl

l
P

d

dN
=

Ω
. 

 

FISSION AND COMPLEX FRAGMENT DECAY 

 

The Bohr-Wheeler transition-state decay width for symmetric fission [2] is 
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where ρsad is the level-density at the saddle-point, Bf(SCN) is the spin-dependent saddle-point energy 
(fission barrier + ground-state rotational energy) and ε is the kinetic energy in the fission degree of 
freedom. The 2-dimension extension of this by Moretto is  

( )
( )

( )











−−=Γ ∫ ∫ ερε

πρ y

y

CNsad

y

CNCN m

p
SyBEd

h

dydp

SE
dyy

2
,*

*,2

1
2

  (9) 

where y is the mass asymmetry, py is its conjugate momentum, my is the inertia associated with motion 

in the y coordinate, and B(y,SCN)  are the energies of the condition saddle-points. The barriers are 

conditional in the sense they represent a saddle-point configuration when the specified mass-

asymmetry is imposed. In the potential-energy surface, these conditional saddle points represent a 

ridge which must be crossed in order to arrive at the scission configuration. 
 

Simplification to this formula can be made from the expansion 
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where the nuclear temperature is determined as  
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With this expansion, the above equation can be reduced to 
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With this formalism, in addition to the conditional barriers, one also requires knowledge of the inertia 

my. Later Moretto suggest a new formalism [35] 
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πρ CNZsad

CNCN

Z SBEd
SE

*
)*,(2

1
     (13) 

where here Z is the proton number of one of the nascent fragments. Basically the term 
h

Tm yπ2
has 

been eliminated and the problem has been discretized. In GEMINI this was further extended by 

allowing for distinct mass and charge splits: 

( )
( )[ ].*
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The conditional barriers now have both the mass and charge asymmetries imposed and are estimated 

as 

( ) PWEMSBSB CoulCN

Sierk

ACNAZ δδ −−∆+∆+= )(,      (15) 

where Wδ and Pδ  are the ground-state shell and pairing corrections to the liquid drop barrier. Shell 

and pairing effects at the conditional saddle points are assumed to be small. The quantity
Sierk

AB  is the 

interpolated Sierk barrier for the specified mass asymmetry. In the Sierk’s Finite-Range calculations, 
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the two nascent fragments have the same Z/A ratio. The correction M∆ now accounts for the different 

Z/A values of the two fragments, i.e. 
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where ( )AZM ,  is the spherical Finite-Range Model mass. In addition there is Coulomb correction  
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where ( )2211 ,,, AZAZECoul  is the Coulomb energy between two fragments (Z1,A1) and (Z2,A2) 

estimated as two spheres separated by 2 fm with a radius parameter of 1.225 fm. 

 The total width requires summations over both the Z and A values of the lightest fragment. 

 

This formalism was implemented with spin-dependent conditional barriers ( )
CN

Sierk

A SB  interpolated 

from the Sierk's full finite-range model calculations for 
110
In [3], 

149
Tb [36], and 

194
Hg and, for lighter 

systems, from Sierk’s finite-range calculations using a more simplistic two-spheroid shape 

parameterization. In the latter case, all barriers were scaled such that the symmetric barrier was 

consistent with the full finite-range model value. For systems which are more fissile than 
194
Hg, the 

194Hg barriers are used.  

 

This scheme works well for light systems which have a minimum in the mass distribution of the decay 

products for symmetric division. In these cases the saddle and scission point are almost degenerate. 

For heavier compound nuclei, saddle and scission points are also still expected to be approximately 

degenerate for asymmetric divisions [37]. Therefore in GEMINI++, for both light systems and for 
asymmetric divisions of heavy systems, the Moretto formalism is kept. All binary divisions are 

included which have asymmetries greater than the value at which the conditional barrier is a 

minimum, which is spin dependent. 

 

For the more symmetric divisions in heavy nuclei, the Bohr-Wheeler formalism is used to predict the 

total symmetric fission yield in GEMINI++. The fission barrier is taken from Sierk’s Finite-Range 

Model value after correcting for the ground-state shell and pairing correction, i.e., 

.)()( PWSBSB Sierk

ff δδ −−=         (18) 

 With the parameterized excitation-energy dependent level-density parameters, we find excellent 

agreement with experiment fission cross sections if the Bohr-Wheeler width is scaled by the factor 2.4 

and the ratio of level-density parameters af/an for the saddle and ground state configuration is taken as 

unity. One can also obtain similar agreement if the Sierk fission barriers are reduced or if af/an is 

increased. The level-density formalism used in GEMINI++, predicts large enhancements in the residue 

cross section produced in very heavy nuclei where fission is the dominant decay mode. With a 
constant level-density parameter, residue cross sections are expected to be small in such nuclei. With 

the excitation-energy dependent level-density parameters, fission is still dominant, but the residue 

cross sections, though still small, are greatly enhanced. Such enhancements are observed 
experimentally and were previously explained by dissipation and fission delays. The present analysis 

suggests a much smaller role for the dependence of the fission probability on these dissipative effects 

and thus they are not included in the default mode of GEMINI++. 
 

However, friction is not forgotten. Once the saddle-point is crossed, the system losses excitation 

energy due to light-particle evaporation during the slow saddle-to-scission motion. To estimate the 

magnitude of this effect, the time required for this motion was assumed to be t=η (Bsad-Bsciss) where 
Bsad and Bsciss are the symmetric saddle and scission point energies and η is the friction. The scission-
point energy is determined as Bsciss=Ek

tot
-Qf where Ek

tot
 is the total kinetic energy released in fission 

from Ref. [38] and Qf is fission Q value. In the descent from saddle to scission, excitation energy is 
being increased due to dissipation and at the same being lost due to evaporation. Significant CPU time 

would be required to fully model this process, so instead a simple formalism was adopted. As the total 

number of neutrons emitted is largely determined from the statistical lifetime of the last emitted 
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particle, we only consider evaporation from the scission-point configuration. The total change in 

potential between saddle and scission Bsad-Bsciss is assumed to be dissipated into excitation energy at 

the scission point. As Bsciss is spin independent, the Weisskopf-Ewing formalism is used for 

evaporation at this stage to calculate the decay widths, i.e., 
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where µ is the reduced mass, σinv is the inverse cross section, and  
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The transmission coefficients of Eq. 2 are used, although, in principle, as we are now dealing with 

evaporation from a deformed system, the Coulomb barriers for charged-particle emissions should be 

lowered. However as charge-particle multiplicities are expected to be small, this is not a large 

problem. The quantities 
0

scissρ and scissρ  are the spin-independent level densities of the parent and 

daughter; 

( ) ( )[ ]scisssciss BEaE −∝ *2exp*ρ        (21) 

where a level-density parameter of 8/Aa =  MeV was assumed. From fitting systematics of 

prefission neutrons multiplicities [39] one obtained η=2 zs/MeV.  

 
Finally, the systematics of fission mass distributions compiled by Rusanov et al.[38] are used to 

choose the mass division from the final scission temperature. Once a binary division has been selected, 

it is important to find the emission angle and the spins of the fragments. These are selected from the 

statistical treatment of angular-momentum bearing normal modes such as bending, wriggling, tilting 

and twisting developed by Moretto [40] and subsequently extended to asymmetric mass division by 

Schmitt and Pacheco [41]. Thermal fluctuations are considered in the subdivision of the total thermal 

excitation energy Utot between the two fragments, i.e., the probability is 

 ( ) ( ) ( )[ ]
12111 2exp2exp UUaUaUP tot −∝       (22) 

where U1 is the thermal excitation energy of one fragments and a1 and a2 are the level-density 

parameters of each fragment. 

GAMMA-RAY EMISSION 

At very low excitation energies, the partial decay widths for particle and gamma decay can be 

comparable and thus it is important to include gamma-ray emission to correctly model the termination 

of particle decay. However for this purpose only the E1 and E2 gamma rays need be considered. From 

Blatt and Weisskopf [42], the decay width for multipolarity l is  
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where ε is the gamma-ray energy, 
3/12.1 AR = fm, D0 is 1 MeV, and lF accounts for deviations from 

the Weisskopf estimates.  Values of F1=0.025 and F2=9.0 were taken from Ref. [43].  

CONCLUSION 

The statistical-model code GEMINI follows the decay of a compound nucleus by a series of binary 

divisions. The partial decay widths are taken from the Hauser-Feshbach formalism for light-particle 

evaporation and from Moretto's generalized transition-state formalism for more symmetry divisions. 

This prescription provides an adequate description of the decay process for light compound nuclei. For 

heavier systems, the predicted mass distributions are too wide. A new code GEMINI++, was written to 
overcome this problem. For heavy systems, the Bohr-Wheeler formalism is now used for symmetric 

fission and the width of the mass distributions of the fission fragments is interpolated from 

systematics. 
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