
DRAFT

Overview of the DarkSide-50
Data Handling System

Kurt Biery,Chris Green,Jim Kowalkowski and Marc Paterno
Scientific Computing Division / Fermilab

Boris Baldin, Stephen Pordes, Jin-Yuan Wu and Jonghee Yoo
Particle Physics Division / Fermilab

Alessandro Razeto
LNGS / INFN

Revision 8 October 30 2012

Contents

1 Introduction 2
1.1 Purpose . 2
1.2 Scope . 2

2 Overview 2
2.1 Detector . 2
2.2 Electronics . 2
2.3 DAQ . 3

3 DAQ Requirements 3
3.1 Functional Requirements for the data path 4
3.2 Functional Requirements for the control and monitoring path 5
3.3 Quality and Robustness Requirements . 5
3.4 Development and Operating Environment requirements 6
3.5 Performance requirements . 7
3.6 Quantities and items of DAQ system monitoring 7
3.7 Scheduling . 7

4 System Architecture 8
4.1 Distribution of Functions . 8
4.2 Major Software Components . 8
4.3 Required communication protocols . 12

5 Deployment and testing strategy 16
5.1 Phase 1 . 17
5.2 Phase 2 . 17

6 Additional Figures 18
Bibliography 18

1

mailto:biery@fnal.gov,greenc@fnal.gov,jbk@fnal.gov,paterno@fnal.gov,alessandro.razeto@lngs.infn.it,baldin@fnal.gov,jywu168@fnal.gov,stephen@fnal.gov,yoo@fnal.gov
mailto:biery@fnal.gov,greenc@fnal.gov,jbk@fnal.gov,paterno@fnal.gov,alessandro.razeto@lngs.infn.it,baldin@fnal.gov,jywu168@fnal.gov,stephen@fnal.gov,yoo@fnal.gov
mailto:biery@fnal.gov,greenc@fnal.gov,jbk@fnal.gov,paterno@fnal.gov,alessandro.razeto@lngs.infn.it,baldin@fnal.gov,jywu168@fnal.gov,stephen@fnal.gov,yoo@fnal.gov
mailto:biery@fnal.gov,greenc@fnal.gov,jbk@fnal.gov,paterno@fnal.gov,alessandro.razeto@lngs.infn.it,baldin@fnal.gov,jywu168@fnal.gov,stephen@fnal.gov,yoo@fnal.gov
mailto:biery@fnal.gov,greenc@fnal.gov,jbk@fnal.gov,paterno@fnal.gov,alessandro.razeto@lngs.infn.it,baldin@fnal.gov,jywu168@fnal.gov,stephen@fnal.gov,yoo@fnal.gov
mailto:biery@fnal.gov,greenc@fnal.gov,jbk@fnal.gov,paterno@fnal.gov,alessandro.razeto@lngs.infn.it,baldin@fnal.gov,jywu168@fnal.gov,stephen@fnal.gov,yoo@fnal.gov

DRAFT

2 DS50 DAQ (Rev. 8 October 30 2012)

1 Introduction

1.1 Purpose

This document describes and defines a project for the data-handling part of the DarkSide-
50 data acquisition system for the TPC detector of the DarkSide-50 experiment. The
DarkSide-50 TPC data acquisition is a collaborative effort of the Fermilab Scientific
Computing and Particle Physics Divisions, and the Laboratori Nazionali del Gran Sasso
Physics Division.

1.2 Scope

The project consists of the provision of computer hardware and software systems for the
transfer, event building and aggregation of the data relevant to the TPC detector from the
DarkSide-50 experiment digitizing hardware to the data-cache at the experiment. The
project also includes the facilities for the necessary interactions with externally provided
System Control and data quality monitor programs and other items including

• system configuration parameters,
• calibration data,
• metadata describing the collected event data, and
• system performance data.

2 Overview

2.1 Detector

The DarkSide-50 experiment is a dark matter search located in Hall C of the Laboratori
Nazionali del Gran Sasso (LNGS) in Italy. The detector has three major components:
a) the central TPC containing 150 kg (50 kg active) of low radioactivity argon sitting in
b) a four meter diameter sphere containing liquid scintillator which sits in turn in c) a
10 meter high, 11 meter diameter water tank. The TPC contains the target which is
viewed by 38 photomultiplier tubes; devices b) and c) are used to veto background events
and contain a total of 190 photomultiplier tubes.

2.2 Electronics

The TPC detector electronics reside in a clean room (required for the construction and
operation of the experiment) above the experiment water shield. The output of the
TPC photomultiplier tubes pass to home-made front-end amplifier and discriminator
boards which produce two analog outputs, one at low gain and one at high gain, and a
discriminated time-over-threshold signal. The analog outputs of the front-end boards are
passed to a set of five CAEN V1720 (high gain) and five CAEN V1724 (low gain) 8 channel
continuous wave-form digitizers. The discriminator outputs from the front-end boards

DRAFT

DS50 DAQ (Rev. 8 October 30 2012) 3

are connected to a CAEN V1495 general purpose FPGA board. A trigger is formed when a
(programmable) minimum number of channels produce discriminator outputs within a
(programmable) time window. (Typical values may be 5 channels and 100 nanoseconds.)
On receipt of a trigger, a fixed length (∼ 300) microsecond block of data starting a fixed
time (∼ 20) microseconds before the trigger is stored in the digitizer memories for readout.
The discriminator outputs for the same period of time are also recorded in a CAEN V1190
TDC. Discriminator output signals from the veto system are recorded in CAEN V1190
TDCs residing in a VME crate in the experiment control room.

2.2.1 Data Header

The header of the data from each event in the CAEN 1720 and 1724 modules will contain
an externally generated 8 bit trigger ordinal, and internally generated trigger counter
and “time stamp” (in units of 8 ns). The V1495 is the source of the 8 bit trigger ordinal,
and has a trigger counter which should match the trigger counter in the digitizers. The
V1495 will also have a “time stamp” for each trigger—with the same zero as the digitizers
but a different clock rate. These data will be available to ensure the integrity of the event
building process.

2.3 DAQ

Each CAEN digitizer is connected by an individual optical fiber to one of 4 channels of a
CAEN A3818C PCIe card sitting in a computer in the clean room. The V1495 and the
V1190 TDCs are read through a CAEN 2718 VME controller which is also connected
by optical fiber to an A3818C PCIe card. The data for one event sent along one fiber is
called a ‘fragment’. Three Fragment Receiver computers, each with one A3818C board,
receive the data fragments from the digitizers and electronics in the clean room and
prepare them for transfer via an InfiniBand switch to a set of computers in the control
room. A single Fragment Receiver computer is located in the control room for readout of
data from the veto system. A total of five Event Builder computers will be located in the
control room to assemble the fragments into complete events and perform a first level of
processing; such processing includes lossless and possibly lossy data compression, and
possible data reduction. The output data stream will be written in time-ordered sequence
to storage in a local short-term cache.1

3 DAQ Requirements

The experiment is expected to run in two main modes—WIMP Search and Background
Study. The amount of digitized data per event is expected to be similar in the two modes.
With a data acquisition window of 300 microseconds, the amount of digitized data per
event is ∼ 8.5 MB, the overwhelming fraction of which is pedestal. The trigger rate for
the WIMP search is expected to be a few Hertz at most. For the background studies,
however, the experiment needs to be able to take data at greater than 50 Hz and the data

1The data will be transferred to long-term storage at LNGS and Fermilab but that is not part of the
present project.

DRAFT

4 DS50 DAQ (Rev. 8 October 30 2012)

acquisition system should be able to handle the maximum throughput available from the
digitizing hardware.

3.1 Functional Requirements for the data path

3.1.1 Data Readout

The system has to perform the following functions:

REQ DP1 Hardware configuration: configure the data acquisition hardware based on
information received from the (external to this project) run control.

REQ DP2 High-gain PMT Reading: read data from the five CAEN V1720 250 MHz
through A3818C PCIe boards into the clean-room Fragment Receiver computers.

REQ DP3 Low-gain PMT Reading: read data from the five CAEN V1724 100 MHz boards
through A3818C PCIe boards into the clean-room Fragment Receiver computers.

REQ DP4 Trigger Data Reading: read trigger information from the (1 or 2) CAEN V1495
board(s) through a CAEN 2718 VME controller connected to an A3818C board into a
clean-room Fragment Receiver computer.

REQ DP5 TPC TDC Data Reading: read TDC data from the (1) CAEN V1190 board in
the clean room through a CAEN 2718 VME controller connected to an A3818C board
into a clean-room Fragment Receiver computer.

REQ DP5.1 Veto TDC Data Reading: read TDC data from the (1 or 2) CAEN V1190
board(s) and V1495 in the control room through a CAEN 2718 VME controller connected
to an A3818C board into a Fragment Receiver computer located in the control room.

3.1.2 Data Fragment Handling

Once the data are received from the A3818 PCIe cards, the Fragment Receiver computers
have to

REQ DP6 Data labeling and packaging: label and package the data from the various
A3818C boards using the header information as described in 2.2.1

REQ DP7 Fragment Routing: route each labeled data fragment to the appropriate Event
Builder computer via the InfiniBand switches.

3.1.3 Event Building

The Event Builder system has to:

REQ DP8 Event Building: build complete events from the fragments it receives.

DRAFT

DS50 DAQ (Rev. 8 October 30 2012) 5

REQ DP9 Compression: be able to perform lossless compression of the event data for
storage.

REQ DP10 Data reduction: be capable of executing modules to perform data reduction
before storage.

REQ DP11 Local event cache: write a time-ordered event stream to local disk storage.

REQ DP12 Data quality monitoring stream: deliver a time-ordered event stream, at
possibly a reduced rate, for data quality monitoring.

REQ DP12.1 Data quality monitoring stream: be capable of accepting event analysis
modules and transmitting the results of the analyses along with the event data to the
data quality monitoring stream.

3.2 Functional Requirements for the control and monitoring
path

The reportable system status items are those necessary for ensuring that the data
acquisition system is running correctly. They are enumerated in section 3.6.

REQ CP1 Reporting to system control: To ensure that the DAQ system is operating
according to specification, all software subsystems in the system must be capable of
reporting performance results and status information to system control.

REQ CP2 Reporting to storage: To allow diagnosis of problems identified in previous
runs, all software subsystems in the system must be capable of reporting performance
results and status information to a database.

REQ CP3 Reporting to system control: The system must report, to system control, the
status of all hardware connected to the A3818C boards.

3.3 Quality and Robustness Requirements

REQ Q1 Robustness against defective data: Events which are identified as defective
will be marked as defective and propagated through the system to a configurable data
stream.

REQ Q2 Reporting defective data: The event builder will report each instance in which
it detects a defective event.

REQ Q3 Robustness against mis-identified fragments: The event builder must be able
to detect mis-identified fragments in which more than one fragment appears internally
identified as coming from the same hardware source (waveform digitizer).

DRAFT

6 DS50 DAQ (Rev. 8 October 30 2012)

REQ Q4 Robustness against missing fragments: The event builder must be able to
detect events for which some fragments do not arrive within a configurable time window.

REQ Q5 Robustness against EB node failure: In the event of a failure of an EB node,
the system shall be reconfigurable to allow data collection at a possibly reduced rate on
the remaining resources.

REQ Q6 Ability to run with partial detector: The system must be able to collect event
data when the detector readout system is incomplete, down to a single active board.

REQ Q7 Reporting loss of computing resources: The system will report the loss of clean-
room computing resources (Fragment Receivers) or control-room computing resources
(Event Builders and one Fragment Receiver).

REQ Q8 Report loss of a data source: The system will report the loss of an expected
data input source (e.g., input from one board).

REQ Q9 Data buffering: The event builder must recognize that the trigger ordinal sets
limit to the number of events which can be buffered.

3.4 Development and Operating Environment requirements

The DarkSide-50 DAQ will be operating at the LNGS. The computing systems will be
setup at Fermilab and run with simulated data to validate the operation of the DAQ
system before shipping to LNGS. A system with one FR and one EB will be maintained
at Fermilab. Members of the Fermilab Scientific Computing Division will assist in the
deployment of the DAQ system on site at LNGS. Arrangements need to be made for the
duration of the experiment for appropriate access by people at Fermilab to the systems
at the LNGS and for appropriate access from LNGS to the required Fermilab environment
for developing, building, distributing, and testing the software from which the system is
composed.

The environment for developing, building, and distributing the DarkSide-50 software will
be the system used to develop, build, and distribute the art framework and used by the
experiments currently using art. This includes the cetbuildtools build system and the
ups product distribution system.

REQ OE1 OS: The supported operating system shall be Scientific Linux Fermi, version
6 (SLF6).

REQ OE2 administration interface: IPMI must be available on the 1G network for low-
level administration functions and monitoring system function on all DAQ nodes.

REQ OE3 OS software updates: The operating system packages must be capable of
update via yum servers.

DRAFT

DS50 DAQ (Rev. 8 October 30 2012) 7

REQ OE4 Application software updates: The application software, including updates to
new releases and release candidates, must be loadable in binary form from FNAL servers.

REQ OE5 Development access to software products: The same software delivery system
used to provide the software to the DAQ computers shall be usable to make the software
available to software development computers at LNGS.

REQ OE6 Development access to DarkSide-50-specific source code: The source code
repository used to store the DarkSide-50-specific code shall be accessible from software
development computers at LNGS. Note: DAQ machines shall not require such access,
and are intended for use neither as software development machines nor as software
building machines.

REQ OE7 System test: The system needs to support testing the data path by reading
files containing simulated or real fragment data, and passing them through the main
data path.

3.5 Performance requirements

REQ P1 Front-end data throughput: The system shall be capable of sustained transfer
at a rate of 900 MB/s from the Fragment receiver computers to the Event Builder
computers. This matches the expected maximum data transfer rate from the digitizers.

REQ P2 Event output rate: The system shall be capable of sustained event-writing rate
of 900/5 MB/s = 180 MB/s to the local event cache [DP11]. This take into account an
expected lossless compression ratio of five.

REQ P3 Event Builder computer input rate: Each Event Builder computer shall be
capable of receiving front-end data at a rate of 180 MB/s.

REQ P4 Fragment Receiver output rate: Each Fragment Receiver computer shall be
capable of delivering front-end data to each Event Builder computer at a rate of 60 MB/s
for a total transfer rate from each Fragment Receiver of 300 MB/s.

3.6 Quantities and items of DAQ system monitoring

(Kurt and group)

3.7 Scheduling

REQ S1 Software provisioning: The computer system shall have all necessary soft-
ware installed before shipping from Fermilab. The necessary software components are
enumerated in section 4.2.

REQ S2 Shipping: The computer system shall be prepared at Fermilab ready for air
shipment to LNGS by November 16 2012.

DRAFT

8 DS50 DAQ (Rev. 8 October 30 2012)

REQ S3 Commissioning at LNGS: The system shall be commissioned from Jan 2013
through March 2013.

4 System Architecture

To meet the functional requirements listed in section 3.1, we have designed a multi-
process event-building program, which uses MPI[1] as the communication protocol for
event-data in the main data path, and which uses a variety of communication protocols
(specified below) for control and monitoring.

The programs run as part of the event-builder MPI program include: a) the fragment
receiver, b) the event builder, and c) the aggregator. These processes are distributed
across the Fragment Receiver and the Event Builder computers.

4.1 Distribution of Functions

The DAQ software runs on a set of nine servers, each of which contains a total of 32
processor cores. Three of the Fragment Receiver nodes reside in the clean room, one
in the control room; each of these contains one of the CAEN A3818 boards. Five Event
Builder computers reside in the control room. Each of the nine nodes is on both an
1Gb/s Ethernet network and an InfiniBand network. Figure 1 shows the distribution of
the computing hardware and the networking connections between the computers.

4.2 Major Software Components

4.2.1 MPI program start-up and management

The System Controller is responsible for starting several processes that form the MPI
event-building application, done using the process management tool pmt. pmt will accept
as input a list of task/node/port triplets, which denote each task (fragment receiving,
event building, etc,) is to be run on which node, listening for system control messages on
the given port.

pmt is responsible for starting and holding together the processes of the MPI program,
and for obtaining their exit statuses. pmt is run on an Event Builder computer.

4.2.2 artdaq fragment receiver

The fragment receiver processes are run on the three clean-room computers and the
fragment receiver in the control-room. The fragment receiver, shown in figure 4, is a multi-
threaded program. It is responsible for a) initializing and configuring the CAEN A3818
board, b) reading data (fragments) from the board, c) routing each fragment to the correct
event builder using MPI, and d) accepting commands from the System Controller via
XMLRPC. When started, the fragment receiver reads, from its command line, the port on
which it is to listen for XMLRCP commands. The information necessary for configuring
the fragment receiver will be sent to it through the XMLRCP protocol.

DRAFT

DS50 DAQ (Rev. 8 October 30 2012) 9

8-port
QDR

IB
Switch

<900MB/s
50m fiber
cables to
compute

farm

1GbE switch

V172X
V172X
V172X
V172X

fiber link
<70MB/s

<20MB/s
DQM streams

<180MB/s
raw data input,
<144MB/s file
transfer rate40Gb/s

copper link

18-port
QDR

IB
Switch

1GbE switch

DSEB1

IB eth

DSEB2

IB eth

DSEB3

IB eth

DSEB5

IB eth

DSFR1

C
AEN

 A3818

IBeth

V172X
V172X
V172X
V172X

DSFR2

C
AEN

 A3818

IBeth

V172X
V172X
V2718
V1495

DSFR3

C
AEN

 A3818

IBeth

DQM Node

eth

System
Control
Node

eth

Database
Node

eth

LNGS Disk
System

eth

<70MB/s
to storage

DSEB4

IB eth
V1190

Clean Room

V2718
V1495
V1190

DSFR4

C
AEN

 A3818

ethIB

Control Room

Figure 1: The DAQ computing platforms and networking.

4.2.3 artdaq event builder

The job of the event builder is to assemble the fragments of a given event into a whole
event, and to run data compression and data reduction algorithms on the whole events.
Each event builder processes, as shown in figure 5, receives fragments from each
fragment receiver process; each event builder process sees one in NEB events, where NEB
is the number of event builder processes being run. The event builder processes are run
on the Event Builder computers in the control-room. The number of event builders run
on each computer is configurable.

Each event builder process is multithreaded, and contains at least the following threads:
a) one thread responsible for receiving fragments through the MPI protocol, and for
assembling then into complete events, b) one thread responsible for processing completed
events with the art framework, c) one thread responsible for sending messages via XMPP
to the Message Logger, and d) one thread responsible for communication via XMLRCP
with the System Controller. The art framework may run additional threads.

The event builders will use the output facilities of the art framework to write data files to
local disk.

The size of each file written by the event builders should be limited so that the intercalated
files written by the aggregator are not too large. When an event builder closes an output

DRAFT

10 DS50 DAQ (Rev. 8 October 30 2012)

Active processes within clean room data path node

V172X C
AEN

 A3818

V172X
V172X
V172X

Fragment
Receiver

fiber link
<70MB/s

Fragment
Receiver

Fragment
Receiver

Fragment
Receiver

Connections:
all Event Builders,
System Control,

and Message
Logger

Figure 2: The active processes of the main data path run on each of the Fragment
Receiver computers.

Active processes within control room data path node

Event
Builder

 MPI in from
all Fragment

Receivers

Local
Aggregator

Other connections:
System Control,

and Message Logger

Event
Builder

MPI signal to
other aggregators

Disk

Disk

Disk

File transfer
and read from

other event
builders

Figure 3: The active processes of the main data path run on each of the Event Builder
computers.

DRAFT

DS50 DAQ (Rev. 8 October 30 2012) 11

Active software functions within the clean-room data-path process

CAEN A3818
Driver

Board
Handler

Fragment
Receiver

System Control
Client

To all Event Builders

CAEN Lib

Message Logger Client XMPP

XMLRPC

MPI

<300MB/s
Raw Data

Handles one
board

To System Control

To Message Logger

Figure 4: The functions and communication paths of the fragment receiver processes.

<180MB/s

Active software functions within the control-room data-path process

art framework

System Control
Client

Message Logger Client

Event Builder
In from
Fragment
Receivers

summaries,
compression

XMLRPC

To System Control

MPI

XMMP

To Message Logger

MPI
Signal to Event
Aggregators

Protocol TBD

To DQM,
< 4MB/s

ROOT I/O to
local file,
<36MB/s

Figure 5: The functions and communication paths of the event builder processes.

file, it sends a message via MPI to the appropriate aggregator, identifying the file that is
ready for transfer.

4.2.4 artdaq aggregator

The job of the aggregator is to create files of time-ordered, contiguous blocks of events.
Since each of the event builder processes sees only a sparse subset of the full event
stream(one in NEB events, where NEB is the number of event builder processes), each
aggregator process must obtain the output files from each event builder for a given period
of data collection. This period should always be an integral number of subruns, to avoid
complications in dealing with intervals of validity of metadata.

DRAFT

12 DS50 DAQ (Rev. 8 October 30 2012)

An aggregator process, as shown in figure 6, will run on each of the Event Builder
computers. When an event builder process closes an output file, it will signal the
aggregator (using the the MPI protocol) that a file is ready for processing. The aggregator
will then transfer the file from its original location to the disk local to the aggregator.

Active software functions within control-room data-path process

art framework

System Control
Client

Message Logger Client

Aggregator
Signals
from all
Builders

merge

XMLRPC

To System Control

MPI

XMMP

To Message Logger

ROOT I/O to
local file,
<36MB/s

File transfer
from Event
Builders,
<36MB/s

ROOT I/O
from local

files

Figure 6: The functions and communication paths of the aggregator processes.

When an aggregator has transferred all NEB data files corresponding to one run period, it
then simultaneously reads all the files to merge the events into a single file of time-ordered,
contiguous events.

4.2.5 messagefacility

The messagefacility package will be used to send all error, warning and informational
messages from the DAQ software to the Message Logger. This package supports the
addition of plug-in message destinations, which provide the protocol by which messages
written using the package’s interface are delivered to the places the messages are bound.

The destination used will support the XMPP protocol, and allow run-time configuration
of the locations to which messages will be delivered. Specification of the Message Logger,
which aggregates the messages, is outside the scope of this document.

4.2.6 Configuration facilities

We will use FHiCL[2] as the format for configuration information. In most cases, the FHiCL
document (the textual specification of an independent portion of program configuration)
will be communicated through the system control protocol (section 4.3.1).

4.3 Required communication protocols

4.3.1 System control using XMLRPC

The run control messages the system must respond to are:

DRAFT

DS50 DAQ (Rev. 8 October 30 2012) 13

1. initialization (configuration): init. This will contain the FHiCL document to config-
ure the relevant system.

2. begin run: start. This will contain the run number.
3. end run: stop.
4. pause run: pause
5. status report: status The application will return a value indicating its status. The

valid status are: ready, initialized, running, paused, and stopped. If there are
multiple active subsystems within the application, each can report a separate status
in addition to the overall process status.

6. current conditions report: report. The application will produce a report containing
performance data and error data that it has collected. FIXME: Does the information
come back in the XMLRPC response or just an indication that the report has been
shipped out to the message logger?

7. reset statistics: perfreset. Reset performance numbers and error counters.

The format of the returned reports will always be a collection of name-value pairs.

4.3.2 MPI Program Start-up Protocol

The pmt program will accept the process layout file described in section 4.2.1. Pmt will
use an underlying mpirun program to start data path processes on all participating nodes
and will remain running while the entire distributed application is alive and operational.
If any of the data path programs exit or abort, this program will first stop all the other
data path programs, calculate a status code and return it.

Table 1: Example pmt configuration file.

progFr DSFR1 11080
progFr DSFR1 11081
progFr DSFR1 11082
progFr DSFR1 11083
progFr DSFR2 11080
progFr DSFR2 11081
procFr DSFR2 11082
progFr DSFR2 11083
progEb DSEB1 11080
progEb DSEB1 11081
progEb DSEB2 11080
progEb DSEB2 11081
progEb DSEB3 11080
progEb DSEB3 11081
progAg DSEB1 11085
progAg DSEB2 11085
progAg DSEB3 11085

The configuration file example of table 1 will generate four unique fragment receiver
processes for each of the two specified front-end nodes. It will generate two event builder
processes on each of three specified computational nodes and one aggregator process

DRAFT

14 DS50 DAQ (Rev. 8 October 30 2012)

on each of three specified computational nodes. All processes will be brought up in an
unconfigured ready state.

Multiple copies of pmt can be active at the same time. Each instance will be a distinct
set of cooperating data path processes and will be to be treated as such. Each instance
requires a unique set of ports assigned for command and control. Each peice of hardware
can only be associated with one pmt instance.

4.3.3 Message Facility messages

Each message sent through the message facility contains a header with both user-
supplied and system-supplied information. The logging API accepts a severity and
category from the caller. The severity must be Error, Warning, Info, or Debug. The
category can be any string and it used to classify the message. Routing and filtering are
performed using the category. Summary statistics are also gathered using the category.

The header of each message contains the following information.

• timestamp
• host name
• host address
• severity
• category
• application name (optional)
• process ID (optional)
• current run and event number (optional)
• software module name (optional)

Whether of not the message headers contain the optional information is up to the
application. Software frameworks such as art fill in the optional items.

4.3.4 Message Facility communications

FIXME This section is not complete. We still need to talk through the details.

<message
from=’fragment_receiver_3@dsfr2’
id=’ktx72v49’
to=’message_server@dsfr4’
type=’normal’
xml:lang=’en’>
<subject>Should this be used for the category?<\subject>
<thread>Maybe use the severity here?</thread>
<body>
header

timestamp=xxx
hostname=xxx
hostaddr=xxx
severity=xxx
category=xxx

DRAFT

DS50 DAQ (Rev. 8 October 30 2012) 15

extendedheader
appl=xxx
pid=xxx
run=xxx
event=xxx
module=xxx

Here is the body of the message.
</body>
</message>

Each of the running programs will be given a unique login name that will include the
name of the application and the instance number (which can be a pid or a rank). The
presence messages will be used to indicate the status of the application instance. The
global message log listener will subscribe to all known application instance names.

4.3.5 File handling and formats

There are two types of output files: in-order event files and out-of-order event files. This
system contains many event builder writing streams. Although each stream writes a
time-ordered event stream, the streams will not write consecutive events. An out-of-order
file does not contain consecutive events (in time, using an integral event counter). To
produce the required file containing consecutive events, an n-way merge step is necessary
to produce the in-order event files. The in-order event files will use the art ROOT output
file format. The out-of-order event files can use any format that captures all relevant
metadata and data products. We will be initially using the same format as the in-order
files to shorten integration and deployment times.

The ROOT output file is a well-established format that is documented elsewhere and
in use within several experiments. It can be simply described as a file of ROOT data
product trees. Each product tree is identifies the type of data it contains. In addition
to the data trees, there are metadata tree, that describe the configuration of each of
the software entities that produced or processed the data products. These files can be
examined directly at the ROOT interactive prompt.

The out-of-order file names will be of the form “OO Writer Stream Run StartingSubRun.root”.
The in-order file names will be of the form “IO Writer Stream Run StartingSubRun.root”.

FIXME Please make sure there is a requirement indicating that subruns cannot span files.

4.3.6 Data source

Describe the FragmentGenerator base class, and the use of the Fragment class.

FIXME This section needs to be completed.

4.3.7 art filter modules

Art module interface for EDFilter and EDAnalyzer and EDProducer. These interfaces
are covered in the art tutorial.

DRAFT

16 DS50 DAQ (Rev. 8 October 30 2012)

4.3.8 Common configuration language

Program and art module configuration will be done using the FHiCL language and the
fhiclcpp package.

FIXME This section should include a typical configuration for the fragment receiver process,
the event building process, and the aggregator. It should also include a suggested
management structure for the fhicl file fragments within the configuration system.

4.3.9 DQM protocol and event streaming

An art output module will be needed that is capable of packaging the event data for
delivery over a network connection to the data quality monitoring application. The
details of this protocol need to be worked out. An art application can be configured with
additional DQM paths that will form DQM data streams. Paths within art can include
filtering modules that can accepts events. A simple standard filtering module is the
prescaling module that can be configured to accept m out of n events. An output module
can be attached to a path. Only events that pass the path are seen by the associated
output module. In addition, an output module can be configured to only write a specific
set of data products.

The art instance running inside the event builder sees all the raw data within each event.
Summary statistics can be readily calculated and stored within each event alongside
the compressed raw data. The system can be configured to supply several DQM data
stream. Two important streams will be the prescaled compressed raw data stream and
the summary statistics stream. It may be possible to sent summary statistics at full rate
to the DQM application.

There are two sources of DQM events: directly from the event builder and out of the
aggregator. The event builder output can be delivered in real-time. The output from the
aggregator will be delayed until there are enough events ready from all event builder to
allow a merging operate to run efficiently.

FIXME If the real-time feed is desired, the event reader within the DQM application must
be able to accept events from all event builders and buffer the data until consecutive
event IDs are present.

5 Deployment and testing strategy

FIXME This section is not yet complete.

The deployment of the hardware will happen in two phases. The first phase is the
installation and configuration at FNAL. The second phase is after shipping, installation,
and configuration at Gran Sasso. This section provides details concerning the location
of equipment and major connectivity, the location and organization of the application
software, file systems, and operating system. Also contained here is a dicussion of
available tests on the various installations

There are four roles that were considered during the development of this section.

DRAFT

DS50 DAQ (Rev. 8 October 30 2012) 17

• Developer - someone who will be making changes to source code, compiling it,
and running tests for it. Each developer will use his own account to perform this
function.

• Operator - someone who will be using parts of the installed software for either
production runing or testing. There will be a shared account available to perform
this function.

• Release Manager - someone who will be building products and installing them for
use in one of the systems. There will be a shared account available to perform this
function.

• System Administator - all low-level system configuration and repair will be performed
through the root account.

• Debugger - someone that needs access to many of the about functions.

There is an implicit assumption that nodes within a dashed box will be interconnected
via 1Gb ethenet. This network will be used for IMPI (low-level remote administrative
functions such as reboot), operating system administration, and login terminals.

The Infiniband network (IB) can carry TCP/IP traffic by using the IP over IB driver. A
TCP/IP network interface will be enabled to permit standard high-speed communications
over the IB network in addition to the ethernet interfaces.

There will be an NFS filesystem configured and running on one of the DAQ nodes. This
NFS filesystem will hold all of the released software products that are not part of the
standard Linux platform. This includes artdaq, art, and all the products they depend
upon. This NFS filesystem will also contain the user account home directories. This
filesystem will be mounted on all of the DAQ nodes.

Infiniband requires a software component to be active called the subnet manager. The
primary subset manager will be located on one of the Fragment Receiver computers. A
secondary back-up subset manager will be located on one of the computational nodes in
the control room.

5.1 Phase 1

Figure 7 depicts the configuration of the DAQ system components during initial configu-
ration at FNAL.

FIXME Important things to note here: first round of installation uses the currently-running
grunt IB switch, all nodes are configured the same way using dsfr1 as the NFS file server.

5.2 Phase 2

Figure 8 depicts the configuration after shipping the major DAQ system components to
LNGS.

FIXME Before bringing up the nodes at Gran Sasso, the subset manager will be installed
and configured as shown. The LNGS development nodes will be severed from the FNAL
network and configured with an NFS server and subnet manager for independent use.
The DAQ nodes remaining at FNAL will be attached to the existing IB equipment. The
DarkSide-50 analysis node will be used as a gateway for login access.

DRAFT

18 DS50 DAQ (Rev. 8 October 30 2012)

6 Additional Figures

These figures may help describe the system design:

Figure 9 shows a schematic of the overall DAQ system.

Figure 10 shows a schematic of the connections and their protocols between various
processes.

Figure 11 shows a schematic of the trigger architecture.

Bibliography

[1] The MPI specification is available at http://www.mcs.anl.gov/research/
projects/mpi.

[2] FHiCL is the Fermilab Hierarchical Configuration Language; the FHiCL home page
is https://cdcvs.fnal.gov/redmine/projects/fhicl.

http://www.mcs.anl.gov/research/projects/mpi
http://www.mcs.anl.gov/research/projects/mpi
https://cdcvs.fnal.gov/redmine/projects/fhicl

DRAFT

DS50 DAQ (Rev. 8 October 30 2012) 19

Development

Development

Production

dsfr1

dsfr5

dseb1

dseb2

dseb3

dseb4

dseb5

dseb7

dsfr2

dsfr3

IB
SW1

IB
SW2

IB SW
Grunt

Cluck
NFS

SM

dsfr4 dseb6

Boris Test
System

NFS

FNAL-LCC

FNAL-LCC

FNAL-LCC

Figure 7: The computing hardware organization for phase I.

DRAFT

20 DS50 DAQ (Rev. 8 October 30 2012)

Development

Development

Production

dsfr1

dsfr5

dseb1

dseb2

dseb3

dseb4

dseb5

dseb7

dsfr2

dsfr3

IB
SW1

IB
SW2

IB SW
Grunt

Cluck
NFS

SM

dsfr4 dseb6

Boris Test
System

NFS

SM
dsfr6

SM

Alessandro
Test

System

IB
SW3

FNAL-LCC

LNGS

Cave

NFS

NFS

SM

NFS

dsas1

Figure 8: The computing hardware organization for phase 2.

DRAFT

DS50 DAQ (Rev. 8 October 30 2012) 21

Figure 9: DAQ Components with art Framework.

Figure 10: Communication Paths and Protocols.

DRAFT

22 DS50 DAQ (Rev. 8 October 30 2012)

Figure 11: Trigger structure

	1 Introduction
	1.1 Purpose
	1.2 Scope

	2 Overview
	2.1 Detector
	2.2 Electronics
	2.3 DAQ

	3 DAQ Requirements
	3.1 Functional Requirements for the data path
	3.2 Functional Requirements for the control and monitoring path
	3.3 Quality and Robustness Requirements
	3.4 Development and Operating Environment requirements
	3.5 Performance requirements
	3.6 Quantities and items of DAQ system monitoring
	3.7 Scheduling

	4 System Architecture
	4.1 Distribution of Functions
	4.2 Major Software Components
	4.3 Required communication protocols

	5 Deployment and testing strategy
	5.1 Phase 1
	5.2 Phase 2

	6 Additional Figures
	Bibliography

